同类图书

Similar books 换一批
  • 高速铁路运输组织

    作者:孙桂岩, 主编

    本书主要介绍高速铁路中与铁道交通运营管理专业紧密联系的相关知识,总结了世界高速铁路的先进技术成果和运营经验,从基本知识、基本概念、基本原理及基本技能角度对高速铁路相关专业进行了介绍,同时增加了近年来我国高速铁路建设所取得的先进技术成果,力求为广大读者了解高速铁路提供一个良好的窗口。本教材在内容的编排上,注重理论联系实际,突出基本概念、基本原理、基本知识的学习,注意吸收和运用国内外高速铁路建设、发展、运营、维护和应急事故处理的最新技术、知识和信息,力求符合教学需要及高职高专学生的认知规律,以期达到内容的全面性、系统性、时代性、实用性及可操作性。

  • 高速铁路与中国西部大开发

    作者:陈钢铁

    本书为“十二五”国家重点图书,国家出版基金自助项目。我国的区域经济发展已进入规模城市化阶段,城镇规模的扩张、城乡一体化建设都需要高速度、快节奏的交通体系与之相适应。发展高铁经济,不仅能促进人流、物流、信息流、资本流由量变到质变的升级,而且能催生沿线经济增长带,推动区域经济快速发展。

  • 高速铁路客运乘务实训教程

    作者:闫莹娜 王慧 王珏

        本书是高速铁路客运乘务专业系列教材之一,内容涉及各类票价计算实训、各种乘车证处理实训、客运记录及铁路电报编制实训、动车组服务质量规范实训、重点及特殊重点旅客服务实训、动车客运乘务应急处理实训、铁路红十字救护实训、客伤处理实训、高铁快运实训及附录等内容,附录内容包括列车长、列车值班员、列车员、餐车长岗位职责。本书注重操作性,最大特色是模块化教学、实训操作性强、配备大量实训习题并附答案。既可作为学校教学使用,也可作为铁路员工培训使用。

图书分类

Book classification
  1. 《高速铁路道岔设计理论与实践(英文)》出版标志著西南交通大学与世界著名出版商爱思唯尔联合实施的中国高铁学术出版“走出去”项目正式拉开帷幕。《高速铁路道岔设计理论与实践(英文)》由中国高速铁路道岔理论研究组组长王平主笔,通过分析中国高速铁路的运行实例,介绍具有中国自主知识产权的高铁道岔基础理论,高铁道岔的设计和维护。
  1. 《高速铁路道岔设计理论与实践(英文)》及时地将这些理论研究成果归纳总结,并呈现给大家,希望能对铁路道岔设计工作者有所帮助,继续推动我国道岔技术的发展。
  1. Preface 
    CHAPTER 1 Types and Structure 
    1.1 Main Types 
    1.1.1 Composition 
    1.1.2 Classification 
    1.2 Technical Requirements 
    1.2.1 Excellent Technical Performance 
    1.2.2 High Cost—Effectiveness 
    1.2.3 Outstanding Adaptability 
    1.3 Technical Features 
    1.3.1 System Integration 
    1.3.2 Theoretical Basis and Practical Tests 
    1.3.3 State—of—the—Art Manufacture and Laying Processes 
    1.3.4 Scientific Maintenance and Management 
    1.4 Global Overview of High—Speed Turnouts 
    1.4.1 France 
    1.4.2 Germany 
    1.4.3 China 
    1.4.4 Other Countries 
    CHAPTER 2 Layout Design 
    2.1 Design Conditions 
    2.1.1 Operation 
    2.1.2 Rolling Stock 
    2.1.3 Tracks 
    2.1.4 Laying 
    2.2 Plane Line Types 
    2.2.1 Design Requirements 
    2.2.2 Transition Lead Curves 
    2.2.3 Switch Rails 
    2.2.4 Clearances 
    2.2.5 Geometric Sizes 
    2.3 Design of Parameters 
    2.3.1 Method Based on Particle Motion 
    2.3.2 Method Based on Rigid Body Motion 
    2.3.3 Design Software 
    2.4 Assessment Methods Based on Wheel—Rail System Vibration 
    2.4.1 Theory of Wheel—Rail System Dynamics 
    2.4.2 Multi—Rigid—Body Dynamics Analysis Software 
    2.4.3 Application Cases 
    CHAPTER 3 Structural Selection and Rail Design 
    3.1 Selection Principles 
    3.2 Overall Structure Selection 
    3.2.1 Guiding—Rail Turnouts 
    3.2.2 Swing Nose Crossing 
    3.2.3 Flexible Point Rail 
    3.2.4 Long Wing Rails 
    3.2.5 Assembled Point Rails 
    3.2.6 Rolled Special Section Wing Rails 
    3.2.7 AT Rail Hot—Forged Heel Ends of Switch Rails and Point Rails 
    3.2.8 Check Rail Made of Grooved Rail 
    3.3 Design of Rail Members 
    3.3.1 Selection of AT Rail 
    3.3.2 Design of Components at the First Traction Point on Swing Nose Rail 
    3.4 Technical Requirements for Rails 
    3.4.1 Requirements 
    3.4.2 Type, Section, and Length of Rails 
    3.5 Manufacturing of Rails 
    3.5.1 Refining 
    3.5.2 Finishing 
    3.5.3 Conditioning 
    3.5.4 Centralized Detection 
    3.5.5 Long Rail Production 
    CHAPTER 4 Wheel—Rail Relation Design 
    4.1 Wheel—Rail Contact Geometry Relation 
    4.1.1 Calculation Methods 
    4.1.2 Rail Profiles 
    4.1.3 Wheel—Rail Contact Geometry (without Wheelset Lateral Displacement) 
    4.1.4 Wheel—Rail Contact Geometry in the Diverging Line 
    4.1.5 Wheel—Rail Contact Geometry (with Wheelset Lateral Displacement) 
    4.1.6 Longitudinal Change along the Turnout (with Wheelset Lateral Displacement) 
    4.2 Wheel—Rail Rolling Contact Theories in Turnout Zone 
    4.2.1 Hertzian Theory 
    4.2.2 Non—Hertzian Rolling Contact Theories 
    4.2.3 Wheel—Rail Rolling Contactin Turnout Area 
    4.2.4 Calculation Method for 3D Elastic Body Semi—Hertzian Rolling Contact of the Wheel—Rail System in Turnout Area 
    4.3 Assessment of Simplified Models 
    4.3.1 Vertical lrregularities 
    4.3.2 Lateral Irregularities 
    4.3.3 Application Cases 
    4.4 Dynamic Evaluation Based on Wheel—Rail Dynamics in Turnout Area 
    4.4.1 Dynamics Models of Train—Turnout System 
    4.4.2 Vibration Equation of Train—Turnout System 
    4.4.3 Evaluation Indicators 
    4.4.4 Simulation Evaluation 
    4.4.5 Evaluation of Wheel—Rail Relation Design 
    CHAPTER 5 Track Stiffness Design 
    5.1 Composition 
    5.1.1 Fastening Stiffness 
    5.1.2 Sub—Rail Foundation Stiffness 
    5.1.3 Track Integral Stiffness 
    5.2 Track Stiffness Design 
    5.2.1 Structure of a Fastening for High—Speed Turnouts in China 
    5.2.2 Vertical Stiffness of Rail Pad 
    5.3 Distribution Rules of Track Integral Stiffness 
    5.3.1 Influential Factors 
    5.3.2 Calculation Models 
    5.3.3 Distribution Rule in Ballasted Turnout 
    5.3.4 Distribution Rule in Ballastless Turnout 
    5.4 Homogenization Design for Track Stiffness in a Turnout 
    5.4.1 Dynamic Analysis at Track Stiffness Transition 
    5.4.2 Relation between Variation Rate of Rail Deflection and Length of Track Stiffness Transition 
    5.4.3 Homogenization Design of Track Stiffness in a Turnout 
    5.4.4 Design of Plate Pad 
    5.5 Design of Track Stiffness Transition for a Turnout 
    CHAPTER 6 Structural Design of CWR Turnouts 
    6.1 Structural Features 
    6.1.1 Basic Requirements 
    6.1.2 Transmission Path of Temperature Force 
    6.1.3 Force Transmission Structure 
    6.2 Calculation Theories and Approaches 
    6.2.1 Equivalent Resistance Coefficient Method 
    6.2.2 Double—Rail Interaction Method 
    6.2.3 Generalized Variational Method 
    6.2.4 Finite Element Method 
    6.3 Regularity of Stress and Deformation of CWR Turnout 
    6.3.1 Distribution Regularity 
    6.3.2 Influential Factors 
    6.4 Design and Verification 
    6.4.1 Contents 
    6.4.2 Design of Rail Laying Temperature of CWR Turnout 
    6.4.3 Arrangement of Creep Observation Stakes 
    6.4.4 Welding Sequence for Large Number Turnout 
    6.4.5 Layout Principle for Turnout Group 
    6.4.6 Layout Principle for CWR Turnout in Tunnel 
    6.4.7 Layout Principle for CWR Turnout on Bridge 
    CHAPTER 7 Design of CWR Turnout on Bridge 
    7.1 Regularity of Longitudinal Interaction of CWR Turnout on Bridge 
    7.1.1 Turnout—Bridge—(Slab)—Pier Integrated Model 
    7.1.2 Regularity of Longitudinal Interaction between Simply Supported Beam Bridge with Ballast Track and Turnout
    7.1.3 Regularity of Longitudinal Interaction between Turnout and Continuous Beam Bridge for Ballast Track 
    7.1.4 Regularity of Longitudinal Interaction between Continuous Beam Bridge with Ballastless Track and Turnout 
    7.2 Dynamic Characteristics of Vehicle—Turnout—Bridge Coupled System 
    7.2.1 Regularity of Dynamic Interaction of Crossover Turnout on Uniform Continuous Beam Bridge 
    7.2.2 Regularity of Dynamic Interaction of Single Turnout on Nonuniform Continuous Beam 
    7.3 Design Requirements of CWR Turnout on Bridge 
    7.3.1 Layout of Turnout and Bridge 
    7.3.2 Design Requirements for CWR Turnout on Bridge 
    …… 
    CHAPTER 8 Conversion Design of High—Speed Turnouts 
    CHAPTER 9 Design of Rail Substructure and Components 
    CHAPTER 10 Theoretical Validation of High—Speed Turnout Design 
    CHAPTER 11 Manufacturing Technologies of High—Speed Turnouts 
    CHAPTER 12 Laying Technology 
    CHAPTER 13 lrregularity Control of High—Speed Turnouts in Operation 
    CHAPTER 14 Maintenance and Management 
    References 
    Index
    ...查看更多
  2. Ping WANG

    Professor of Civil Engineering at Southwest Jiaotong University, China; and Director of Key Laboratory of High-Speed Railway Engineering, Ministry of Education.

    Professor Wang is a leading researcher and developer of high-speed turnouts in China. He has been involved in teaching and research work in the area of high-speed railway track structures for nearly 20 years and has successfully solved many of the technical challenges faced in the process of designing, operating, and maintaining high-speed railways in China.The Southwest Jiaotong University Press and Elsevier Series covers the latest advances in railway research and development. Its scope includes track dynamics, safety,construction, power quality, remote control, and integration of power systems....查看更多

评论

0/500