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Chapter 2  Mechanical and Dynamic Behavior  

of Rock Masses 

2.1  Overview of Rock Masses 

2.1.1  Rock material and rock masses 

Natural rock that differs from most other engineering materials consists of rock material and a lot 

of discontinuities (Fig. 2.1). A clear distinction must be made between the rock material and the rock 

masses. Rock material is the term used to describe the intact rock between discontinuities and the rock 

masses is the total in situ medium containing discontinuities. In the engineering view, rock material 

can be treated to be uniform with high stiffness and has relatively high strength and small 

deformability. However, the discontinuities produce most of the deformations in rock masses and have 

a dominant effect on the response of the rock masses to the rock cavern (Brady and Brown 1993). In 

the case of wave propagation induced by dynamic loads, the discontinuities give more attenuation 

than rock material to the wave propagation. Wave transmission, reflection and energy absorption will 

occur when the wave hits a discontinuity (Cook 1992). 

 
Figure 2.1.  Typical jointed rock masses 
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2.1.2  Major types of discontinuities 

Discontinuities in a rock mass were formed under different geological conditions and have 

undergone a long geological history. According to their formation and geological characteristics, they 

can be classified into three types: rock interface, joint and fault. 

Rock interface was originally formed together with the formation of rocks. A typical rock 

interface is the bedding plane existing in the sedimentary rocks. It divides sedimentary rocks into beds 

or strata and represents interruptions in the course of deposition of the rock masses. It is often 

perfectly-bonded between two opposite sides. Both compression and tension can be transmitted across 

the interface, and no sliding displacement occurs. The interface is actually a discontinuity of media 

properties and makes the rock masses stratified anisotropic medium. 

Joints are the most common and generally the most significant discontinuities in the rock masses. 

Joints are breaks of geological origin along which there has been no visible displacement. Joints may 

be saturated or filled with other materials. They can be considered as imperfectly-bonded interfaces in 

which tension cannot be transmitted and sliding displacements may occur. Joints are displacement 

discontinuities and lead the rock masses to be a fractured or jointed medium. 

Faults are fractures on which identifiable shear displacement takes place. They may be 

recognised by the relative displacement of the rock on opposite sides of the fault plane and may have a 

wide fractured or squeezing zone due to the strong geological activities. 

As commonly done in rock mechanics, in this context, the term “joint” is used to represent a 

collective term for all discontinuities in rock masses. 

2.1.3  Important geomechanical properties of joints 

The mechanical behavior of joints is governed by their geomechanical properties including 

orientation, spacing, persistence, aperture, filling, roughness and matching (Brady and Brown 1993). 

Orientation is described by the dip of the line of maximum declination on the joint surface 

measured from the horizontal, and the dip direction or azimuth of this line, measured clockwise from 

true north. The orientations of joints relative to the faces of excavations have a dominant effect on the 

potential instability due to falls of blocks of rock or slip on the joints. The mutual orientations of joints 

will determine the shapes of the blocks into which the rock masses are divided. 

Spacing is the perpendicular distance between adjacent joints, and is usually expressed as the mean 

spacing of a particular set of joints. The spacing of joints with their connectivity and dimension together 

determines the sizes of the blocks making up the rock masses. The mechanism of deformation and 

failure can vary with the ratio of joint spacing to excavation size. Engineering properties such as 

cavability, fragmentation characteristics and rock masses permeability also vary with joint spacing. 

Persistence is the term used to describe the area extent of size of a joint within a plane. It can be 

crudely quantified by observing the trace lengths of joints on exposed surfaces. It is one of the most 

important rock masses parameters but one of the most difficult to determine. The persistence of joints 

will have a major influence on the shear strength developed in the plane of the joint and on the 
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fragmentation characteristics, cavability and permeability of the rock masses. 

Aperture is the perpendicular distance separating the adjacent rock walls of an open joint in 

which the intervening space is filled with air or water. Aperture is thereby distinguished from the 

width of a filled joint. The aperture and its area variation have an influence on the shear strength of the 

joint and specially on the permeability or hydraulic conductivity of the joint and of the rock masses. 

Filling is the term used to describe material separating the adjacent rock wall of joints. Filling 

materials have a major influence on the shear strength of joints. 

Roughness is a measure of the inherent surface unevenness and waviness of the joint relative to its 

mean plane. The wall roughness of a joint has a potentially important influence on its shear strength, 

especially in the case of undisplaced and interlocked features. The importance of roughness declines 

with increasing aperture, filling thickness or previous shear displacement. Barton (1971; 1973 &1976) 

proposed a joint roughness coefficient (JRC) to describe the surface roughness scaled from zero to 20. 

Typical roughness profiles and corresponding range of JRC for 20 cm (JRC20) and 100 cm (JRC100) 

samples are shown in Figure 2.2 

Matching is proposed as an independent joint surface geometrical parameter. The joint matching 

coefficient (JMC) represents the percentage of joint surfaces in contact (Zhao 1997a). Figure 2.3 

shows the classification of the JMC of a joint. The JMC is often coupled with the existing joint 

roughness coefficient (JRC) to fully describe the geometrical properties and to assess the 

hydromechanical behavior of joints. It has been demonstrated that the JMC is an important factor 

governing the aperture, normal close, stiffness, shear strength and hydraulic conductivity of the joints. 

 
Figure 2.2.  Typical roughness profiles and corresponding range of JRC (after Barton and Bandis 1990) 
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                 (a) Smooth Joint                               (b) Rough Joint (matched) 

 
(c) Rough Joint (mismatched) 

Figure 2.3.  Classification of JMC (after Zhao 1997a) 

2.2  Mechanical Behavior of Jointed Rock Masses 

2.2.1  Rock material behavior 

Rock material can have compression as well as considerable tensile strength depending on the 

rock type. The tensile strength of rock material is often much lower than the compressive strength 

(less than one-tenth, generally), so the main concern in rock material is the characteristic under 

compression loading, which includes stress-strain relationship and compressive strength. 

2.2.1.1  Stress-strain relationship under compression 

Similar to other geomaterials, e.g., soil and concrete, a rock material has two types of 

stress-strain relationship under compression load. They are brittle and ductile. Uniaxial and 

multipleaxial tests (including biaxial, triaxial and polyaxial tests) are often used to determine the 

stress-strain relation of rock material. 

Figure 2.4 shows a typical stress-strain relation of rock material under uniaxial compression. It starts 

with a linear deformation and is followed by a plastic deformation until the peak strength. The curve 

then drops down gradually and tends to be flat (residual strength). The deformation modulus can also 

be determined from the stress-strain relation. 

Figure 2.5 shows the axial stress-axial strain curves at various confining stresses. It can be seen that the 

strengths (peak and residual) increase with increasing confining stress. With the increase of confining stress, 

the stress-strain relation of rock material may be transited from brittle to ductile. 
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Figure 2.4.  Typical stress-strain relation of rock material under axial compression (after Zhao et al. 1996) 

 
Axial stain, a (%) 

Figure 2.5.  Stress-strain relation of rock material at various confining stresses (after Brady and Brown 1993) 

2.2.1.2  Compressive strength criteria 

Various strength criteria have been proposed to estimate the strength (peak or residual) of rock 

material.  

Coulomb shear strength criterion 

The Coulomb shear strength criterion is widely used in numerical modeling of rock material and 

rock masses, which is expressed as 

tannc     (2.1) 

where c is the cohesion and  is the friction angle. 

The uniaxial compressive strength c and tensile strength T can be derived from Equation (2.1): 

2 cos

1 sinc

c 





, 
2 cos

1 sinT

c 





 (2.2) 



 

·6· 

Hoek-Brown Criterion 

Hoek and Brown (1980) proposed a peak triaxial compressive strength criterion of isotropic rock 

material as 

1/ 2

3 31 1.0
c c c

m
 

  
 

   
 

 (2.3) 

where m is a constant varying with rock type. 

2.2.2  Rock joint behavior 

The mechanical behavior of a joint is often expressed by the normal stress-deformation, shear 

stress-deformation and dilation as shown in Figure 2.6, where kn and ks represent the normal stiffness 

and shear stiffness, respectively. They can be written as 
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where  denotes an increment, n, n,  and s are normal stress, normal deformation, shear stress 

and shear deformation, respectively. 

The joint can be compressed but not failed. However, the joint has a tensile strength. When the 

tensile strength is exceeded, the tensile resistance will be zero. In most cases, the tensile strength is 

very low and thus often assumed as zero. The joint has a limiting resistance against shear load. When 

the peak shear strength is exceeded, the slip will occur at the joint. But the joint still has residual shear 

strength.  

The joint constitutive model is very important to estimate the joint mechanical behavior and must 

be provided to numerical modeling, including the normal stress-deformation relation, shear 

stress-deformation relation and shear strength criteria. Various models of them have been proposed. 

 
(a) Compression (b) Shearing (c) Dilation  

(after Pande et al. 1990) 

Figure 2.6.  Mechanical Behavior of a Joint 

2.2.2.1  Normal stress-deformation relation 

Goodman model 

For the normal stress-deformation relation of rock joints, Goodman et al. (1968) proposed a 

hyperbolic model given by 
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where n is the normal stress; n is the normal closure; i is the initial stress level and nm is the 

maximum closure of the joint. 

Goodman (1976) suggested an alternative version of equation (2.5) as 
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where a and b are two material constants. 

Kulhaway Model 

Another hyperbolic model was presented by Kulhaway (1975) to fit the stress-strain curve of a 

rock joint under triaxial compression with basic form: 
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where  is the deviator stress;  is the axial strain; a and b are constants. 

Bandis Model 

Based on a series of laboratory tests, Bandis (1980) proposed a hyperbolic model with a similar 

form to the Kulhaway model, to describe the normal stress-displacement behavior of a rock joint 

(Bandis et al. 1983): 
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where kni in MPa is initial normal stiffness which is calculated by: 
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where jn is the joint aperture in millimeter at zero normal stress; JRC is the joint roughness 

coefficient and JCS is the laboratory-scale joint wall compressive strength. The allowable closure nm 

for load i is given by: 
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where ai, bi, ci, di are constants associated with load cycle number. 

Brown and Scholz Model 

Brown and Scholz (1986) proposed a logarithmic function to present the normal behavior of rock 

joints: 

ln( ), /n n n nc b k b      (2.11) 
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where c and b are material constants determined by the geometry of the roughness profile. 

Saeb and Amadei Model 

After Bandis model, Saeb and Amadei (1992) proposed a normal model by considering the joint 

dilatancy: 

n nn n ns sk k        (2.12) 

where knn and kns are two normal stiffness;  denotes an increment; n and s are joint normal 

closure and shear displacement, respectively. 

Continuously-yielding Model 

In the continuously-yielding model proposed by Cundall and Hart (1985), the response to normal 

loading is non-linear and expressed incrementally as 

n n nk     (2.13) 

where the normal stiffness kn is given by 

ne
n n nk a   (2.14) 

representing the observed increase of stiffness with normal stress, where an and en are model 

parameters. 

2.2.2.2  Shear stress-deformation relation 

Kulhaway Model 

A hyperbolic function was proposed by Kulhaway (1975) to express the non-linear behavior of a 

sheared joint in the pre-peak range: 
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where s is the shear displacement at a level of shear stress ; a is the constant representing the 

reciprocal of the initial stiffness and b is the constant representing the reciprocal of the horizontal 

asymptote to the -s curve. 

Goodman Model 

The shear response of a joint to shear loading under constant normal stress is idealised by 

Goodman (1976), which consists of pre-peak, post-peak and residual regions. The model can be 

expressed as 
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where p and sp are the peak shear strength and displacement, respectively. Likewise, r and sr 

are the residual shear strength and displacement, respectively. 

Saeb and Amadei Model 

After Goodman model, Saeb and Amadei (1992) proposed a shear model by considering the joint 

dilatancy. 

sn n ss sk k       (2.17) 

where ksn and kss are two shear stiffness coefficients. Souley et al. (1995) presented an extension 

of the Saeb and Amadei model to take account of the effect of cyclic loading on joint normal and 

shear behavior. 

2.2.2.3  Shear strength criteria 

When a joint in rock masses is compressed under normal loading, a maximum closure and 

no tension are allowed. The joint peak shear strength is defined to be the peak value of shear 

stress as shown in Figure 2.6 (b). If the shear strength is exceeded, the joint will slip along the 

joint surface. During the slipping, the joint has still a resistance to the shear, which is so-called 

residual strength. 

There are several criteria in estimating the joint shear strengths. 

Coulomb Slip Model 

The Coulomb slip criteria is often used to judge the shear failure of a joint. 

tannc     (2.18) 

where c is the cohesion of the joint which is very small and often neglected;  is the frictional 

angle of the joint. 

Dilatant Model 

The Coulomb slip criteria is derived by assuming the joint be smooth and clean. By testing 

artificial rough joints at low normal stresses, it was found that the shearing occurs by the riding over 

of asperities, which remain unbroken. The shear strength increases with normal stress linearly 

described by the dilatant model (Patton 1966; Withers 1964) 

tan( )n i      (2.19) 

where i is the peak dilation angle. 

JRC-JCS Model 

The empirical JRC-JCS joint model, proposed by Barton and his co-workers (Barton 1971,1973 

& 1976; Barton and Choubey 1977; Barton et al. 1985; Barton and Bandis 1990; Bandis et al. 1981 & 

1983), is the most commonly used shear strength criterion in rock mechanics and is expressed as 

10tan[ log ( / ) ]n n rJRC JCS       (2.20) 

where JRC is the joint roughness coefficient; JCS is the laboratory-scale joint wall compressive 

strength and r is the basic friction angle of fresh unweathered joint in the range 28.5 to 31.5. 
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JRC-JMC Model 

The JRC-JCS shear strength model was initially based on artificial or fresh tension joints in 

artificial material and weak rocks, which, in general, represent rough and closely matched surfaces. 

However, it is found to overpredict the shear strength of natural joints in rocks. This is because the 

natural joints are often altered since the fracturing and the surfaces of joints are no longer closely 

matched. 

Based on the laboratory tests of freshly induced joints and natural joints, Zhao (1997a) 

proposed the joint matching coefficient (JMC), an independent geomaterial parameter, to account 

for the degree of matching of the two joint surfaces. The JMC has a value scaled from zero to one, 

based on the percentage of joint surface area in contact relatively to the total joint surface area. 

Zhao (1997b) also proposed the JRC-JMC shear strength model by combining the JMC into the 

JRC-JCS model as 

10tan[ log ( / ) ]n n rJRC JMC JCS        (2.21) 

This model is implemented into the discrete element code UDEC by the author. 

Jing et al. Model 

Based on a series of laboratory tests under 3-D loading conditions, Jing et al. (1992) proposed a 

joint shear strength model as: 

tan[ (1 / ) ]b
n r o n c         (2.22) 

where o is the initial friction angle; r is the residual friction angle; b is a material parameter 

representing the crushing effects of the asperity angle with respect to the normal stress; c is the 

uniaxial compressive strength of the rock material. 

Continuously-yielding Model 

The continuously-yielding shear strength model was proposed by Cundall and Hart (1985) and 

revised by Lemos (1987). It provides a unified simulation of joint behavior, by taking account of 

continuous attrition of joint roughness with shear displacement. This is intended to simulate, in a 

simple fashion, the internal mechanism of progressive damage of the joint. A component of plastic 

deformation was introduced in the continuously-yielding shear model and attended all shear 

displacement, and progressive reduction of joint roughness and dilatancy with joint plastic 

deformation. The model displays irreversible, non-linear behavior from the onset of shearing. The 

shear stress increment is calculated as: 

s sF k      (2.23) 

where F is a factor representing the tangent modulus relating to the joint roughness which 

depends on the distance from the actual stress to a defined bounding strength curve. 

2.2.3  Rock mass behavior 

Actual rock masses are often fractured by a lot of joints and become anisotropic media. 
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Therefore, the global response of the jointed rock masses is more concerned in rock engineering. Both 

rock material and joints in a rock mass generate the deformation and the failure of the rock mass 

depends on the stress distribution and joint mechanical properties. Figure 2.7 shows the failure of rock 

specimen containing a joint under triaxial compression and indicates that the rock failure depends on 

the inclination angle of the joint. 

In the case of a rock containing several joint sets, the lowest strength envelope to the individual 

strength curves gives the overall strength as shown in Figure 2.8. When the rock is heavily jointed, it 

is often simply treated to be an equivalent continuous medium having material properties combined 

from rock material and joint properties (Hoek and Brown 1980). 

  

(a) Rock mass with a single joint under 
triaxial compression 

(b) Rock mass strength at constant confining stress versus the 
inclination angle of the joint  

Figure 2.7.  Compressive strength of rock masses with a single joint depending on the inclination angle of the 
joint (after Hoek and Brown 1980) 

                
           (a) Two discontinuities with α=90                  (b) Three discontinuities with α=60   
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(c) Four discontinuities with α=45 

Figure 2.8.  Strength curves for rock specimens with several joint sets  
(after Hoek and Brown 1980) 

2.3  Dynamic Response of Jointed Rock Masses 

The rock masses response to dynamic loads is more complicated than that to static loads 

depending on the loading rate. 

2.3.1  Rock material response 

Similar to other continuous materials, rock material provides geometric damping and material 

damping to the wave propagation. The wave subject to geometric spreading decreases in amplitude 

and frequency with distance from the wave source as the energy is distributed over an expanding 

surface. During the wave propagation, the wave energy dissipates in the host medium of rock material, 

due to the temperature exchange with surrounding media and deformation on the populated 

microcracks in rock material. 

The dynamic behavior of rock material is often described by its strength (compression and 

tension strength), deformation modulus and stress-strain relationship, and mostly influenced by strain 

rate. Generally, the strength of rock material increases with increasing strain rate, but amount of 

increment varies with the rock types. Brace and Jones (1971) summarised the experimental results 

under different kinds of strain rate performed by other researchers. It is shown that the strengths of 

igneous rocks increases about 10% with the strain rate increasing of three order of magnitude (103 s-1), 

while the strengths of limestone increase 18%. Kumar (1968) found that the strength of rock is related 

to the velocity of propagation and the total number of micro-cracks. The increase of strain rate may 

induce the increase in number and propagation velocity of micro-cracks. This is why the increase of 

strain rate induces the increase of rock strength. Zhao and Zhao (1998) reviewed the experimental 

results on rock strength at different strain rates and found that rock strength increases with increasing 

strain rate. The increasing rate of the rock strength with increasing stain rate depends primarily on 

rock type, the existence of micro-cracks and the porosity of rock. Rocks of high strength are less 
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sensitive to the strain rate effect. In some cases, a sudden increase in compressive strength can occur 

at high strain rate. A schematic relation between compressive strength and strain rate was suggested 

by Zhao and Zhao (1998) as shown in Figure 2.9. It was also found that the elastic modulus increases 

with the increase in strain rate (Yang and Li 1992). As a general rule, dynamic modulus may be 

greater than static modulus by up to 300%. The difference between them is usually ascribed to the 

effects of closed cracks on deformation (Brady 1993).  

2.3.2  Joint response 

It is commonly accepted that the joints in rock masses dominate the response of jointed rock 

masses under static loading (Goodman 1976; Bandis et al. 1983). However, relatively few studies on 

the wave propagation through jointed rock masses have been conducted either theoretically or 

experimentally. Swolfs et al. (1981) conducted a field test on a 2 m3 of sandstone block containing a 

near-vertical joint and observed a 40% decrease in seismic velocity due to the in situ stresses 

unloading of the block. King et al. (1984) measured the amplitudes and travel times of high-frequency 

seismic waves propagated parallel and perpendicular to joints in basalt. He found that lower velocities 

and more high-frequency attenuation are obtained in the direction perpendicular to the joints than in 

the direction parallel to them. 

 
Figure 2.9.  Schematic relation between compressive strength and strain rate 

(after Zhao and Zhao 1998) 

2.3.2.1  Wave transmission and reflection at joints 

When an incident wave hits a jointed interface, the reflection and transmission waves will 

occur as shown in Figure2-10 (Cook 1992). In Figure 2.10, P is compression wave, Sv, and Sh are 

plane shear waves polarised in the x-z plane and the x-y plane, respectively. i and i (i=1, 2) are 

incident, transmitted or reflected angles. Only material damping is considered and represented by 

the transmission coefficient, reflection coefficient and energy absorption coefficient. The 

geometric damping is often neglected because the thickness of joints is too small relative to the 

model size. 

Kendall and Tabor (1971) found that when a seismic wave goes through a joint in rock masses, 



 

·14· 

seismic stresses are continuous but displacements are not. They derived a solution of the transmission 

and reflection of compression waves normal to the plane of a joint. Their results showed that both the 

amplitude and phase of these waves depend upon the ratio of joint stiffness to the seismic impedance 

of the material, and on the frequency of the wave. 

Extensive laboratory experiments on seismic wave transmission across natural joints in 

laboratory samples were conducted by Pyrak-Nolte (1988). It was shown that a joint can be 

described either as a displacement discontinuity, if the coupling between the two half spaces is an 

elastic stiffness, or as a velocity discontinuity, if the coupling is viscous. In the case of a 

displacement discontinuity, both the amplitude and phase of reflected, transmitted and converted 

waves depend upon the ratio of stiffness to seismic impedance and on the frequency. For a pure 

velocity discontinuity, the amplitudes of reflected, transmitted and converted wave depend only 

upon the ratio of viscosity to seismic impedance. Natural joints may be expected to comprise both 

a displacement discontinuity and a velocity discontinuity possessing elastic as well as viscous 

coupling across the interface. Pyrak-Notle (1988) derived complete solutions for all angles of 

incidence and different seismic impedance in each half space. 

     

 
Figure 2.10.  Wave transmission and reflection at a rock joint (after Cook 1992) 

Majer et al. (1990) investigated the effect of a single joint on the transmitted waveform and 

corresponding amplitude spectra, and found that the transmitted wave is slowed and attenuated with 

decreasing joint stiffness. The attenuation is characterized by both decreasing amplitude and filtering 

of the high frequency components of the pulse as shown in Figure 2.11, where k denotes the joint 

stiffness and z is the wave impedance. 
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Figure 2.11.  Illustration of the effects of a single fracture on the transmitted waveform and corresponding 

amplitude spectra (after Myer et al., 1990) 

2.3.2.2  Joint dynamic shear strength 

When a wave goes through a joint and the shear stress at the joint exceeds the joint shear  

strength, the joint will fail in shear and energy dissipation will occur. The joint shear strength under 

dynamic loads is affected by more factors than static strength. Only limited studies on it have been 

conducted. Two dynamic shear strength models of joints have been proposed; one is under cyclic load 

and the other under dynamic load with high loading rate. 

Interlock/Friction Model 

Cyclic experimental tests show that an offset phenomenon presents between the loading and 

unloading process (Jing et al. 1992 & 1993; Huang et al. 1993; Qiu et al. 1993; Kaña et al. 1996). The 

offset is recognised as an increase in shear stress required for shear displacement away from the 

natural rock alignment and a decrease in shear stress with displacement toward the naturally aligned 

rock position. Kaña et al. (1996) proposed an interlock/friction model by combining interlock function 

and friction function together 

[ ( ) ( )]n f x g x    (2.24) 

where f(x) is the interlock function representing the offset; g(x) is the friction function based on a 

combination of the approximate Coulomb law. 

Jing et al. (1992 & 1993) found that the shear stress after the reverse of shear direction is almost 

constant and its magnitude is usually smaller than the residual shear stress during forward shear. They 

explained this phenomenon as due to different damage states of asperities. The asperities on a joint 

surface are classified into the primary asperities and higher order asperities. The higher order asperities 

are sheared off during forward shear and become negligible at reversal shear. 

Frictional Sliding Model 

When the loading rate is very high, the time and rate effects cannot be neglected when the sliding 

occurs along the joint surface. The frictional sliding model is used to model the frictional sliding 

behavior including unstable or stick-slip behavior under dynamic loading. Dieterich (1978; 1979a; 
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1979b and 1981) and Ruina (1980 &1983) conducted experiments on the friction sliding of rock joints 

and found that the shear strength at constant normal stress n is dependent on the slip velocity V and 

state variables i that represent the prior slip history. The general form of the relation is given as 

1 2( , , , ,..., )n mF V      (2.25) 

The prior slip history in the form of dependence on a set of state variables evolves with on-going 

slip. 

1 2( , , , ,..., )i
i n m

d
G V

dt


    ,  i=1, 2, …, m (2.26) 

A one-state variable constitutive relation was proposed by Ruina (1980 &1983) and expressed as 

* *( , ) ln( / )F V a V V        (2.27) 

*d / d ( , ) ( / )[ ln( / )]t G V V d b V V       (2.28) 

where V* is a reference velocity at which =*; a, b and d are positive empirical constants with 

units of stress, stress and length, respectively.  

A two-state variable constitutive relation, which provides a close description of the observed 

behavior from experiments, was proposed by Ruina (1980 &1983) and expressed as 

1 2 * 1 2 *( , , ) ln( / )F V a V V           (2.29) 

1 1 1 2 1 1 1 *d / d ( , , ) ( / )[ ln( / )]t G V V d b V V        (2.30) 

2 2 1 2 2 2 2 *d / d ( , , ) ( / )[ ln( / )]t G V V d b V V        (2.31) 

Where *, a, b1, b2, d1 and d2 are constants. Both one-state and two-state variable constitutive 

relations have been incorporated in the discrete element code UDEC which are verified by comparing 

numerical results for a single degree of freedom system with analytical results (Lorig and Hobbs 1990; 

Hobbs et al. 1990). It should be noted that this model is practically useful only if a reference velocity 

is defined. This may require estimation of a steady-state creep velocity for a fault as the reference 

condition, but very few publications are presented in this area. 

2.3.3  Rock mass response 

The natural rock masses that waves go through are often a composition of rock material and 

joints. The response of the rock masses is related to that of both rock material and joints. A wave 

going through rock material encounters material damping and geometric damping. When the wave 

hits a joint, the wave will be partially transmitted, reflected and lose some energy. For rock masses 

with several joint sets, multiple wave reflections occur. The superposition and interaction of waves 

including wave transmission and reflection between the joints cause very complicated wave 

propagation in jointed rock masses. In general, the poorer rock and rock masses with more joints 

cause more wave attenuation (Cook 1992). 
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