山区高速公路关键工点施工控制及安全预警技术研究

$$
\begin{array}{lllll}
\text { 杨志华 } & \text { 段 } & \text { 军 〇 著 } \\
& \text { 杨 } & \text { 林 } \bigcirc \text { 审 }
\end{array}
$$

西南交通大学出版社
－成 都：

Shanqu Gaosu Gonglu Guanjian Gongdian Shigong Kongzhi ji Anquan Yujing Jishu Yanjiu山区高速公路关键工点施工控制及安全预警技术研究
杨志华 段 军 著

责任编辑	杨 勇
封面设计	GT 工作室
出版发行	西南交通大学出版社 （四川省成都市金牛区二环路北一段 111 号西南交通大学创新大厦 21 楼）
发行部电话	028－87600564 $028-87600533$
邮政编码	610031
网 址	http：／／www．xnjdcbs．com
印 刷	四川煤田地质制图印刷厂
成品尺寸	$170 \mathrm{~mm} \times 230 \mathrm{~mm}$
印 张	24
字 数	357 千
版 次	2020年8月第1版
印 次	2020年8月第1次
书 号	ISBN 978－7－5643－7458－7
定 价	98.00 元

图书如有印装质量问题 本社负责退换
版权所有 盗版必究 举报电话：028－87600562

参编人员 》》》》

王 宾 代绍海 杨希文 王忠伟 念培红

王甲贤 熊 勇 方义明 闻乃军 张家颖

刘 波 张良翰 周轶峰 段 瑜 贾述顶

余平军 牟春海 李晓龙 赵宝才 马䘳云

黄灿荣 何汝苗 涂 雄 邱挎琼 杨锐槐

金 飞

近年来，我国高速公路建设发展迅速，高速公路是国民经济与人们生活的重要基础设施，其建设对促进国民经济发展，交通便利化，物流，资源开发和投资吸引力具有重大的影响和积极作用。随着我国高速公路里程的不断增加，山区公路建设已成为我国公路建设的主战场。

云南省属于典型的高原多山地貌，修筑山区高速公路不可避免地进行深挖高填与隧道施工，由此形成路堑，路堤边坡以及隧道边仰坡，这些填挖施工破坏岩土体原有的平衡，因此在施工过程中极易诱发坍塌，滑坡等工程事故；在运营阶段受降雨，地下水，外部荷载等自然因素的影响也容易导致边坡垮塌等地质灾害的发生，对公路交通基础设施危害极大。岩土体的失稳破坏，都是从渐变到突变的发展过程。应用适当的监测手段，掌握其变形运动特征及相关影响指标的定量演化过程，捕捉工程事故与灾害前兆特征信息，就能有根据地判断工程事故与灾害险情的发生，做到提前预防，合理决策。因此，运用光纤光栅技术，研究高速公路隧道洞口段，顺层边坡段，高填方路段施工阶段的实时监控预警技术，能够为保证这些关键工程的施工质量和施工安全提供技术支撑；同时进一步开发运营阶

段的山区高速公路远程实时监控预警技术，为高速公路运营期的灾害预警及防治提供支撑。

保施高速公路投资开发有限公司基于保（山）施（甸）高速公路的施工安全管控实践与科学研究，组织编写了《山区高速公路关键工点施工控制及安全预警技术研究》一书。全书的编写紧扣山区高速公路工程施工安全管控的关键技术问题展开，具有很强的实用性，对于提高山区高速公路施工安全管控技术水平具有较强的应用价值和现实指导意义。

著 者
2020年3月

目
 录

第 1 章
山区高速公路的特点 001
1.1 山区的工程地质特征 001
1.2 山区高速公路施工安全生产的特点 006
1.3 山区高速公路关键施工点 010
第 2 章
保施高速公路施工概述013
2.1 工程简介 013
2.2 工程概况 022
2.3 初步设计批复意见执行情况 023
2.4 工程与水文地质条件 028
2.5 沿线筑路材料，水，电等建设条件及其与 公路建设的关系 038
2.6 生态环境状况 040
第 3 章
高填方路基的特点及处治措施 042
3.1 高填方路堤的定义与断面形式 042
3.2 高填方路基的特点 043
3.3 高填方路基的常见病害及沉降机理 052
3.4 高填方路堤软弱土的处治措施 059
3.5 填料碾压夯实 065
第 4 章
高填方路基边坡稳定性分析 069
4.1 研究背景，意义，现状与方法 069
4.2 有限元强度折减法的原理，优点与 超高边坡失稳的判据 076
4.3 填方路基边坡荷载 080
4.4 斜坡地基上填方路堤破坏机理分析 084
第 5 章
高填方路基施工关键技术 093
5.1 填料的压实机理 093
5.2 路基填料 095
5.3 填筑质量控制指标体系 105
5.4 路基施工要点与施工质量控制 111
第 6 章
高填方地基变形监测与预测 122
6.1 高填方变形监测技术 122
6.2 监测原理 126
6.3 人工神经网络模型 132
第 7 章
顺层边坡稳定性分析及加固技术 136
7.1 顺层岩质边坡结构特征及破坏模式 136
7.2 顺层边坡预加固方法研究 153
7.3 顺层边坡加固设计方案优化 160
7.4 路基边坡防护技术及其适应性分析 177
第 8 章
顺层边坡变形失稳机制 192
8.1 边坡结构 192
8.2 稳定性影响因素 194
8.3 顺层边坡失稳模式 199
8.4 边坡稳定判据与分析方法 207
8.5 岩土体物理力学参数 215
第 9 章
顺层边坡信息化施工 221
9.1 概 述 221
9.2 信息化施工的工作程序 225
9.3 监测工程的实施 236
9.4 高边坡信息化施工 245
第 10 章
顺层边坡监测技术 247
10.1 概 述 247
10.2 顺层边坡位移监测 248
10.3 地下水监测 260
10.4 结构物监测 263
10.5 边坡安全监测预警 267
第 11 章
隧道洞口段的特点和作用 272
11.1 隧道洞口段的特点 272
11.2 隧道洞口段位置的选择 273
11.3 隧道洞口段的支护技术 275
11.4 隧道洞口段的开挖技术 281
11.5 边仰坡开挖支护技术 283
11.6 明洞施工关键技术 294
11.7 明洞及缓冲结构 303
第 12 章
隧道洞口段的施工关键技术 310
12.1 隧道洞口段施工原则与方法 310
12.2 隧道进洞方式及洞门边仰坡类型 314
12.3 隧道洞门施工 320
12.4 隧道进洞施工关键技术 322
第 13 章
隧道洞口段的施工监测技术 335
13.1 监控量测目的，原则，要求与方案 335
13.2 隧道洞口段监控量测数据分析 339
13.3 拱顶下沉数据分析 347
13.4 周边收敛数据分析 352
13.5 监测预警 357
参考文献 365

第1章 山区高速公路的特点

1.1 山区的工程地质特征

山区地质病害致灾因素可归纳为特殊类土，地质作用，灾害地质，人类活动四个方面。特殊类土是指对公路工程产生危害，具有特殊岩土体结构和工程地质特性等的公路地质体。地质作用为易形成公路地质病害的岩溶，断裂构造，不稳定斜坡等地质环境条件或工程地质条件的活动性构造，岩溶岩蚀作用等地质作用产物，特殊地质构造，地质体结构。灾害地质为公路建设已经面临需处置的既存的或即将构成公路地质病害的现状滑坡，崩塌，泥石流等地质隐患。人类活动为公路路线通过或直接展布于其上的人类工程活动形成的采空区，不稳定边坡等。

1．1．1 山区病害致灾因素鉴别

山区病害致灾因素的正确鉴别是防治地质病害诱发的基础。山区地质病害致灾因素的识别，需正确把握致灾因素划分标志（表 1－1）。

表 1－1 山区地质病害致灾因素识别标志简表

类	型	属 性	判别标志	成 因
特 殊 类 土	软土	在静水或缓慢流水环境中沉积而成的，天然含水量大，压缩性高，承载力低，透水性差的一种软塑到流塑状态的饱和黏性土层	一般具有触变性，流变性，高压缩性，低强度，低透水性和不均匀性。另外，软土还具有一定的结构性	1．滨海沉积 2．湖泊沉积 3．河滩沉积 4．谷地沉积 5．泥炭沼泽

类	型	属 性	判别标志	成 因
$\begin{aligned} & \text { 特 } \\ & \text { 殊 } \\ & \text { 类 } \\ & \text { 土 } \end{aligned}$	膨胀土	土中黏土矿物成分主要由亲水性矿物组成，同时具有吸水显著膨胀软化和失水收缩硬裂两种变形特性，且具有湿胀干缩往复变形的高塑性黏性土	1．现场判别（土颗粒细掝，常出现浅层滑坡和地裂，周围构筑物开裂，地形平缓无明显自然陡坎等 ）； 2．指标判别按土体与水相互作用所呈现的水理性质指标（塑性指数，液限，自由膨胀率，膨胀力等）等进行判别	1．湖相沉积 2．冲积 3．残积，坡积 4．洪积 5．冰水沉积
	红层软岩	＂红层软岩＂泛指形成于侏罗系，白垩系与第三系泥岩，砂岩泥岩，粉砂岩，砂岩，砾岩等软硬相间的层状岩体，外观上以红色，棕红色，砖红色为显著特征，为内陆碎屑沉积建造，碎屑物质成分变化大，以泥质胶结为主，也有钙质及铁质胶结，系软质岩石	根据其矿物成分和化学成分的组成规律进行判别	形成于侏罗系白垩系与第三系的泥岩，砂岩泥岩，粉砂岩，砂岩，砾岩等软硬相间的层状岩体
地 质 作 用	岩溶	在石灰岩等可溶性岩石分布地区，岩石长时间受到水的化学溶䗝和机械作用，形成溶洞，溶沟，裂隙，暗河，石芽，石笋，石钟乳等地面及地下的奇特景观，这种由于水对可溶性岩作用的演变，以及由此产生的特殊地貌形态和水文地质现象	石牙，石笋，漏斗，溶蚀洼地，坡立谷，溶蚀平原，落水洞，坚井，溶洞，暗河，天生桥，土洞，地下湖等	可溶性岩层由于流水的长期化学作用和机械作
	断裂构造	岩体受构造应力作用发生变形，当变形达到一定程度后，使岩体的连续性和完整性遭到破坏，产生各种大小不一的断裂，称为断裂构造。包括断层和裂隙	破碎带标志，断层面标志，构造标志，地层岩相标志，地貌水文标志和线状排列的侵入体硅化，矿化现象	构造应力作用。裂隙和断层（活断层）

类	型	属 性	判别标志	成 因
	不稳定斜坡	自然横坡在 15° 左右，工程地质和水文地质环境较差，有潜在滑移可能，在受荷载作用下易引发地质和工程病害的自然边坡	坡体上方长期有水的影响（泉眼，水田水库等），土体长期处于潮湿饱水状态，坡度在 15° 左右的自然边坡	软弱土层和水的影响。外荷载作用改变其平衡状态
	滑坡	斜坡上大量土体和岩体在重力作用下，沿一定的滑动面（或带）整体向下滑动的现象	可根据地形地物标志，地层构造标志，水文地质标志等综合进行分析识别	按其主滑面类型分为同生面滑坡，接触面滑坡，层面滑坡和构造面滑坡。按其力学特征分为牵引式滑坡和推移式滑坡
灾 害 地 质	崩塌	在陡峻的斜坡上，巨大岩块在重力作用下，突然而猛烈地向下倾倒，翻滚，崩落的现象	高度大于 30 m ，坡度大于 45° 且上缓下陡的凸坡或凹凸不平的陡峻斜坡；由坚硬性 （脆或软硬）互层的陡峻斜坡；以及岩层的不利构造和产状组合等构造条件	地形条件，岩性条件，构造条件，其他自然因素等
	岩堆	岩石山坡在各种物理，化学作用下失稳，产生塌滑，剥落，形成大小不一的岩石碎块，岩屑，在自然力的作用下，搬运，堆积物体	地质构造作用强烈，气候干旱，风化严重的山区和高山峡谷地区。岩性软弱易风化的岩层分布区和破碎的花岗岩，石灰岩等组成的山坡坡角区等，多有岩堆出现	岩性和局部地形，地质构造，气候环境条件等。分为正在发育，趋于稳定和稳定等三种岩堆
	泥石流	在暴雨，冰雪融水等水源作用下，发生在山区沟谷中含有大量泥沙石块的特殊洪流	地质不良，地形陡峻，有明显的汇水补给，固体物质补给，流通渠道和堆积环境等。沟槽不对称，不固定，沟槽堆积的石块有尖角且无方向性和无明显层面等	
	地面沉降	由于水对地表下岩土体的溶蚀作用或人类活动引发的地表塌陷现象，以及构造物对地基承载力过大引发的地面沉陷现象	沉陷周围较显著，道路凹陷明显等	水的因素，岩土体支撑条件改变，人类活动等

类	型	属 性	判别标志	成 因
人类活动	采空区	地下固体矿床开采后的空间及其围岩失稳而产生位移，开裂，破碎垮落，直到上覆岩层整体下沉，弯曲所引起的地表变形和破坏的地区或范围	1．小型采空区：地表塌陷或开裂，裂缝呈上宽下窄且无显著位移。 2．大型采空区地表凹地，地面下沉，地面倾斜等。 3．矿产地的活动遗迹	人类活动导致岩土体支撑条件的改变
	人I 边坡	由人类公路工程活动开挖的岩土体边坡，统称为人工边坡。一般指公路路面以上的坡面	新增坡度普遍陡于自然坡面，坡体普遍呈现分台等人工痕迹和防护工程，排水工程等人工痕迹	岩土体条件，水环境的改变和突变，较大的临空面等
	$\begin{gathered} \text { 人工 } \\ \text { 填土 } \end{gathered}$		高出于地表带型构筑物，坡面具一定的规律性，一般坡面为 $1: 1.5$ ，坡面进行了一定的人工绿化和美化	地基承载力不足引发的路基崩溃路面开裂，构造物外倾，路面变形，填土速度过快引发的路基破坏等

1．1．2 山区地质病害致灾因素的工程危害

山区地质病害致灾因素的致灾环境条件识别及工程致灾特性的预见是山区建设地质病害防治措施选择的基础（表1－2）。

表 1－2 山区地质病害致灾因素工程危害简表

	型	致灾环境条件	致灾工程特性	致灾公路工程危害性
特 殊 类 土	软土	水力作用，工程扰动，地震作用，外力影响等	天然含水量，天然孔隙比，直剪内摩擦角，十字板剪切强度，静力触探锥尖阻力，压缩系数	路基沉降与不均匀沉降，路基变形，路面开裂，构造物倾斜；桥梁基础承载力不足引起桥梁变形破坏，隧道变形等
	膨胀土	水环境改变导致土力学性能改变	胀缩性，崩解性，多裂隙性，超固结性，风化特性，强度衰减性	路基变形，构造物变形和开裂破坏，路面变形破坏，路基边坡失稳，隧道变形等
	$\begin{aligned} & \text { 红层 } \\ & \text { 软岩 } \end{aligned}$	水环境的改变影响土力学性能		一般不能直接用作路基填料，引起构造物地基承载力变化，路基变形路面开裂和沉陷，构造物破坏，隧道变形等

续表

	型	致灾环境条件	致灾工程特性	致灾公路工程危害性
地 质 作 用	岩溶	水环境改变，隐蔽性岩溶对工程的影响	岩石的可溶性，岩石的透水性，水的溶蚀性，水的流动性	路基沉陷，桥梁基础安全，隐蔽性岩溶对隧道安全的影响，岩溶水对隧道的影响等
	断裂 构造	水文地质复杂，节理裂隙发育，岩石破碎，风化严重等	断层的力学性质，位置，产状，发展阶段，水文地质特征等，影响公路建设的规模和采取的工程技术对策以及工程造价	避让大断层破碎带需增加工程造价，公路建设易引起坍塌，隧道洞顶塌落等
	不稳定斜坡	地质环境和水环境，有潜在滑动面。外荷载影响等	有滑移的可能性，排水条件较差。受路基土方等外荷载作用，极易引发路基滑移	路基滑移，构造物变位，严重时影响桥梁安全和下方的隧道安全
灾 害 地 质	滑坡	地形地貌及气候环境，地层岩性，地质构造，水，工程活动等外力因素等	滑坡变形速度较快，破坏性强，冲击力巨大	滑坡是山区公路的主要病害之一。堵塞河道，摧毁公路，影响路基稳定和安全，隧道变形，桥梁变位等
	崩塌	地形地貌，气候环境，地层岩性，地质构造，水，工程 活 动 等 外力因素等	滑坡变形速度差异较大，破坏性强，冲击力巨大	滑坡是山区公路的主要病害之一。堵塞河道，摧毁公路，影响路基稳定和安全，隧道变形，桥梁变位等
	岩堆	地 表 水 和地下水的影响，工程活动等外力影响	浸水后易局部或整体滑移；向外的层间节理，在外力作用不易产生沉降滑动；结构松散，孔隙之间不均，稳定性差	路基变形，边坡的稳定问题，地表水和地下水等排导设施破坏，桥梁基础稳定
	泥石流	地形条件下，水文气象要素，地质条件（固体物质的补给）人类活动及植物覆 盖	暴发突然，地区性特点很强，属于区域性的工程地质现象，暴发频率差异较大	淤埋公路，堵塞江河，掩埋公路，冲毁桥梁和涵洞，大石块撞击桥梁，冲刷桥梁基础，冲毁公路等
	地面 沉降	塌陷后的填充环境及稳定性，导致对策措施难以确定	稳定性不易测定，导致构造变形，路面凹陷，桥头跳车等病害	路面沉陷，路基开裂，构造物变形或破坏等

续表

类		致灾环境条件	致灾工程特性	致灾公路工程危害性
$\begin{gathered} \text { 人类 } \\ \text { 活动 } \end{gathered}$	采空区	填充环境和走向，范围，规模，稳定与发展趋势，变形大小等难以调查清楚，导致对策措施难以确定	隐蔽性，无规律性。导致地表塌陷，开裂，地表凹地等地基稳定性问题	路基沉陷，桥梁基础安全，隧道安全，构造物变形破坏等
	人工边坡	坡面地质环境与工程技术对策不协调，气候环境，水环境的改变及其他诱发因素	新增坡面临空面，易诱发牵引式滑坡，崩塌，碎落等边坡病害（边坡失稳）	阻断公路，砸毁路面，破坏公路构筑物，污染路面等
	人工 填土	地质环境和水环境，填土速度，填筑材料	在自然地面上堆载，易诱发推移式滑坡，当地基承载力较低时，易产生路基失稳及路面开裂等病害	路基下坡面失稳，构造物外倾，路面变形，开裂崩溃等

1.2 山区高速公路施工安全生产的特点

1．2．1 工作环境

（1）施工流动性大，施工环境变化频繁。山区高速公路工程的流水施工作业，使得作业人员经常更换工作地点和环境。高速公路工程的作业场所和工作内容是动态的，不断变化的，工作环境包含着危险源，而相应的安全防护设施往往是同步于甚至落后于施工过程（结构施工中）的。随着工程进展，作业人员所面对的工作环境，作业条件，施工技术等不断发生变化，由于环境变化频繁，施工作业人员容易在适应新环境的过程中，受到环境中的不利条件影响，使得危险概率增大，给施工企

业带来很大的安全风险。
（2）施工项目具有临时性和一次性的特征决定了高速公路工程的安全问题不断变化。施工项目中的结构物，设备，机械，机具，材料乃至人员，都表现出很强的临时性，很难按照同一图纸，同一施工工艺，同一生产设备进行重复生产，导致无法彻底辨识和了解施工中的全部危险源，展开系统的防范和控制。而且，许多施工过程都是在临时设施上进行的，如脚手架，模板等，增加了施工的危险性。
（3）高速公路施工的高能耗，施工作业的高强度，施工现场的扰动因素（噪声，热量，光线，有害气体和尘土等），以及作业人员长时间高强度的作业等，都是工人经常面对的不利工作环境和负荷情况。
（4）施工作业中露天作业量大，时间长，其间受温度，气候条件影响大，易受风，雨和雷电等恶劣自然环境的影响，从而导致施工危险性增大。
（5）施工项目工序多，变化大，环境影响因素突出。施工项目从基础施工到上部结构施工各阶段，工程内容迴异，工序和施工方法也不相同，作业环境也随时改变。其中隐藏的危险源众多，原因各异，导致危险源的辨识困难，危险隐患增加。
（6）施工项目高处作业多。在山区高速公路施工过程中，高处作业多，同时受到恶劣自然环境的影响，在防护不当时，极易发生高处坠落等安全事故。
（7）施工作业面狭窄，存在交叉作业多等危险隐患。山区高速公路施工场地狭窄，使施工场地与施工要求的矛盾日益突出。由于进度需要和实际施工条件制约，经常需要多工种，多班组在同一作业面内展开施工作业，在有限的场地集中大量的人力，建筑材料，机械设备进行立体交叉作业，起重机械使用增多，龙门架，井字架亦普遍推广，流水交叉作业大量增加，导致危险源在有限时空内高度集中。在工期紧迫时，安全防护措施不到位，造成机械伤害和物体打击等伤亡事故增多。
（8）劳动对象体积，规模大，劳动工具粗笨，施工作业者劳动强度高，手工劳动多，作业人员易产生工作疲劳，注意力分散，从而导致误

操作和事故发生。
（9）作业人员的操作过程复杂程度高。山区高速公路施工项目工艺繁多，施工条件复杂。作业人员在进行施工作业时，还需密切注意周围环境变化，随时进行施工协调，导致劳动复杂性程度增大，一旦发生疏忽容易造成事故。
（10）人机混合作业，容易产生机械伤害。施工机械设备在项目施工过程中普遍使用，但从使用条件来看，许多施工机械设备和人员混合作业，导致事故隐患集中，危险性增大。

1．2．2 组织结构

（1）施工企业与项目部分离，使安全措施不能得到充分的落实。一个施工企业往往同时承担多个项目的施工作业，企业与项目部通常是分离状态。这种分离使得安全管理工作更多的由项目部承担。但是，由于项目的临时性和市场竞争的日趋激烈，经济压力也相应增大，公司的安全措施被忽视，并不能在项目上得到充分的落实。
（2）多个建设主体的存在及其关系的复杂性决定了安全管理的难度较大。高速公路工程建设的责任单位有建设，勘察，设计，监理，施工等诸多单位。施工现场安全主要由施工企业负责，实行总承包的，主要由总包单位负责，分包单位向总承包单位负责。由于多级分包体制的存在，承包商安全管理的力度会随着管理层等级的增加而衰减。具体施工过程中遇到的安全问题，由于调动资源的权限不同，很难及时得到解决。施工企业的队伍和人员流动性较大，使得现场的工作人员经常发生变化，而且施工人员属于不同的分包单位，有着不同的安全管理措施和安全管理。

1．2．3 管理方式

（1）目标（结果）导向对施工企业形成一定的压力。
高速公路工程施工中的管理主要是一种目标导向的管理，只要结果 （产品）不求过程（安全），而安全管理恰恰体现在过程上。项目具有明

确的目标（质和量）和资源限制（时间，成本），再加上分包的出现，这些使得施工企业承受较大的压力。
（2）施工作业的非标准化使施工现场危险因素增多。
施工企业生产过程技术含量低，劳动和资本密集。工人散布工地从事多个工位和任务的工作，施工现场劳动对象和劳动条件千变万化，很难一一规范所有操作行为。低技术含量决定了从业人员的素质相对普遍较低。而工人与施工单位间的短期雇佣关系，造成施工作业培训不足，使得违章操作的现象时有发生，这使不安全行为成为重要的事故发生隐患。而管理和控制只能更多地依赖监督和经验。

1．2．4 作业人员

（1）工人工作的自主性强。
工作环境的变化，管理的目标导向以及作业的非标准化，使得从事高速公路施工的作业人员在工作中相对于其他行业的劳动者有更大的自主性，即事故预防更多地依赖对工人的管理和安全培训。然而，工人与雇主间的短期雇佣关系，使雇主对通过工人培训获得安全效益缺乏信心，使工人培训被忽视或压缩，加大了工伤事故率。
（2）工人的素质相对较低。
从事山区高速公路施工的大多数工人来自农村，受到的教育培训较少，相对素质较低，安全意识较差，安全观念淡薄，从而使得安全事故发生的可能性增加。综上所述，山区高速公路施工安全生产的特点决定了安全生产管理的难度较大，在施工过程中，项目处于复杂多变的环境条件下，且自身作业活动多样，施工条件多变，导致系统整体包含的危险源集中，危险性特点多样，表现为安全事故的多发性。安全生产工作需要从系统的角度整合各方面的资源来有效地控制安全事故的发生。同时，这些特点也决定了安全事故发生于具体的施工作业活动中，有效地进行安全生产行为管理，即为控制安全事故的发生，采取有效的工作步骤和序列，是施工企业降低安全事故发生概率，提高安全管理水平的最直接有效的方法。

1.3 山区高速公路关键施工点

1．3．1 高填方路基关键施工点

长期的公路建设过程中并没有对高填方的稳定性问题形成相对统一的分析方法，由于理论的缺失，且相对于低边坡而言，高边坡的变形破坏机理更加复杂，因此高填方路堤的变形和稳定性问题在高等级公路建设过程中显得十分突出。高等级公路对路面的平整性有着比普通公路更高的标准，山区地层岩性与地基坡体结构条件复杂多变，填筑在斜坡地基上的路堤由于坡体填筑厚度不同，若施工质量没有很好地控制，往往容易出现路堤的不均匀沉降，不均匀沉降发展到路面引起路面开裂。高填方路堤的破坏导致公路建设及养护期间花费大量的资源与财力，运营期出现失稳破坏，不但使正常交通受到影响，也将使周边环境遭到破坏，影响生态平衡。高填方路堤边坡的变形与稳定性问题一直属于山区修建高速公路不可回避的问题之一。

高填方路堤边坡因受地质条件，施工方法，支护等因素的影响，地质体具有随机性与多变性的特点，时空变异性强。前期地质勘查与钻探很难获得所有高填方路基足够而全面的地质资料，所有在此基础上进行的初步设计与技术设计等存在诸多不确定性，加上施工方法，技术设备等方面的综合影响。且由于高填方路堤填筑面积与土石方量大，对设计有着严格的要求，在实际工程中路堤的变形问题相比稳定性问题来得更为重要，路堤变形超过设计要求值时路堤可能仍维持在设计要求的稳定范围内，但变形值已影响到公路的使用性能。

1．3．2 顺层边坡关键施工点

在修建和运营中的高速公路边坡垮塌事故中，顺层边坡垮塌是比较突出的一类。顺层岩质高边坡在地质构造中包含各式各样的结构面，而结构面也是导致顺层岩质边坡失稳和变形的重要控制因素之一。结构面的强度参数往往与上下部岩体差距很大，这也是边坡产生变形的主要因素，尤其在岩层倾角较缓且含有软弱夹层时，软弱夹层对整个边坡的稳

定性起着至关重要的作用。在实际的工程项目建设中，公路建设中常常将层面倾向与边坡倾向接近的边坡视为顺层岩质边坡。

在对顺层岩质边坡稳定性计算时，需要对岩质边坡的岩体岩性，走向与线路关系，不利结构面在岩土体的位置，地下水发育情况，岩层薄厚程度，岩层倾角的大小，以及开挖方式的选择等诸多影响因素进行考虑。因此，顺层岩质边坡的稳定性的评价及加固方案设计，一直成为高速公路路基专业设计的难点。

在过去高速公路建设中，遇到了大量的顺层岩质高边坡垮塌事故，如：十襄高速公路 100 多千米中高度大于 40 m 的就有 43 处，滑坡导致工程处治费用增加了将近 1 亿元；京珠高速公路韶关段，有将近 90 处高边坡，在施工过程中及通车后，由于产生滑坡和变形，加固的费用总共超过 8 亿元；云南元磨高速公路总共里程 147 km ，高于 30 m 的高边坡就有 400 多处，出现病害段落占到了所有高边坡段落长度总和的一半，处治费用高达 6 亿元；重庆梁万高速公路总共里程 62 km ，其中有 20 km路段通过砂岩泥岩互层路段，因此产生了很多顺层滑坡，在施工期间绝大多数的高边坡开挖后都出现了变形，增加的加固费用达 2 亿元；沪蓉西高速公路从宜昌至利川，总共 330 km ，该段线路有将近 30 km 路段穿越软岩地区，在工程建设中多处边坡发生失稳破坏，其中朝阳服务区更是导致了 1.2 km 整体滑动，迫使当地整个村庄搬迁，这一事件造成了巨大的经济损失，更是造成了严重的工期延误；云南普宣高速公路起点有长达 4 km 的顺层岩质边坡，其中有一段高达 80 m 的边坡，最后成为高速公路建设中的控制性工程，加固费用达 1 亿元。

设计方案中如果对边坡变形认识不足，考虑因素不全，当设计方案中采用的加固措施不适当时，往往会导致很多次级灾害，如挡墙失效，由于下滑力过大导致抗滑桩失效倾斜，由于过高考虑岩层的黏聚力导致针索张拉不到设计值，这样既造成了较大的经济损失又耽误了工期。反之，如果设计过于保守，夸大下滑力，也会造成材料的浪费和经济损失。从已建的高速公路资料统计来看，顺层岩质边坡出现变形或者滑塌大多具有滞后性，一方面是因为在边坡开挖过程中没有进行及时的防护，另一方面是由于前期工作勘察工作量不足，在工后服务中不重视开挖岩层

的变化，还有就是在边坡开挖中遇到极端天气，如暴雨入渗，地震等因素，迅速改变了边坡的应力平衡状态，产生滑坡，这些都势必会造成人员生命安全危害和经济损失。

1．3．3 隧道洞口段关键施工点

在隧道洞口段，由于埋深浅，围岩一般较软弱破碎。这类围岩强度较低，胶结程度差，孔隙率高，岩体结构破碎，节理裂隙发育，受风化影响显著，故自稳能力差，易受施工扰动，在隧道开挖后围岩变形量大，变形速率快且持续时间长，如果稍微处理不当，则极易发生大变形甚至塌方等工程事故。这些事故不仅严重影响施工安全，同时还存在影响施工进度，治理难度高，费用高等问题，为工程建设带来极大的不便。随着我国的隧道系统不断完善，如海底隧道，长大隧道，越江隧道的完成，说明隧道工程建设已具有了较高的技术水准，但软弱破碎围岩隧道塌方等事故还是时有发生，因此，如何完善隧道建造技术，达到有效控制软弱破碎隧道围岩变形是隧道工程建设的重要课题之一。

在公路隧道建设中，目前新奥法施工仍然在得到广泛应用。该方法以岩体力学特征，岩体变形特征以及莫尔－库仑屈服准则为依据，利用围岩的自承能力，并从时间和空间效应上考虑隧道开挖对围岩变形的影响，其支护结构主要由锚杆和喷射混凝土组成，使支护结构形成封闭环，从而达到抑制围岩变形和松弛的目的。若隧道穿过软弱破碎岩层等地质条件较差的岩层时，可能还需要进行超前支护或预先加固地层，以保证支护的及时性和有效性。

隧道开挖必然会对周围岩体产生扰动，导致隧道周围岩层发生变形和位移，并打破围岩的原始平衡状态，软弱破碎围岩隧道开挖则更是如此。软弱破碎围岩失稳破坏一般以大变形为主，当隧道开挖软弱破碎围岩变形和位移超过其容许限制时，则可能会危及工程质量和安全性，更会严重影响人民的生命财产安全与工程施工进度，而这些事故也和工程设计与施工密不可分。由此可以看出，研究软弱破碎隧道开挖围岩变形特征以及施工方法的必要性。

第 2 章 保施高速公路施工概述

2.1 工程简介

省高网 S41 维（西）永（德）高速公路保山至施甸段（以下简称＂本项目＂）是规划的省高网 S41 维西至永德高速公路的重要路段，也是杭州至瑞丽高速公路（G56）的纵向连接线。项目起点接杭瑞高速，通过杭瑞高速转换可连接保山市绕城高速及昌保高速，止点与规划维永高速施甸至永德段顺接。其功能：第一是落实国家＂一带一路＂倡议的需要；第二是适应云南省建设＂一区一兵一中心＂发展战略的需要；第三是改善云南省路网结构，提升公路服务能力的需要；第四是促进区域社会经济发展，开发矿产及旅游资源的需要；第五是完善救援通道，增强抗灾救灾能力的需要；第六是促进民族团结，维护边疆稳定，增强国防交通战略的需要。规划图如图2－1 所示。

图2－1 保山至施甸段规划图

保施高速公路路线起点位于保山市隆阳区辛街乡大官市村东侧，设置大官市立交与已建杭瑞高速相接，经由旺镇，仁和镇，施甸县城等地，路线止点位于施甸县城东侧莽中寨附近，止点桩号 K33＋310，近期接施甸至卡斯公路，远期接规划施甸至链子桥高速公路，路线全长 33.492 km （综合里程）。如图2－2，图2－3。

主要控制点：大官市（起点），由旺镇，仁和镇，施甸县城，莽中寨 （止点）。

图 2－2 起点接线方案图

图 2－3 止点接线方案图

2．1．1 相关方案

1．本项目与云维水泥厂石灰石矿区关系

本项目热水塘至兵斗寨段路线从两个云维石灰石矿区之间通过，隧道段与矿区最小间距为 140 m ，桥梁段与矿区最小间距为 200 m 。距离矿区距离满足《中华人民共和国公路法》中第五章第四十七条＂在大中型公路桥梁和渡口周围二百米，公路隧道上方和洞口外一百米范围内，以及在公路两侧一定距离内，不得挖砂，采石，取土，倾倒废弃物，不得进行爆破作业及其他危及公路，公路桥梁，公路隧道，公路渡口安全的活动＂的相关规定。矿区相关单位在开采过程中，应严格按照公路法等相关法律法规的规定，对爆破等作业进行严格控制，避免对高速公路工程及行车等安全造成影响，如图2－4。

图2－4 本项目路线与云维石灰石矿区位置关系图
本项目热水塘至兵斗寨段路线方案已由本项目业主与相关单位签订了同意本项目通过的协议。

2．本项目与中缅油气管道关系

本项目于 K $1+805 \sim \mathrm{~K} 3+990$ 段设置小官市隧道穿越山峰，小官市隧道于 K3＋150 与中缅油气管道交叉，高速公路下穿油气管道（高速公路

设计标高 1945.74 m ，油气管道标高约 2054 m ，高差约 108 m ），高差满足相关规范规定。

本项目下穿中缅油气管道段路线方案已由本项目业主与相关单位签订了同意本项目通过的协议。

3．本项目起点与 G56 杭瑞高速接线情况

本项目起点接线方案在工程可行性研究报告阶段已进行了多方案深人比选研究，初步设计，施工图设计起点接线方案在工程可行性研究报告研究结论的基础上开展。

在本项目工程可行性研究报告中，共拟订了 4 个起点接线方案，分别对应 K 线，A 线，B 线，C 线四个方案。其中：起点接线方案一位于隆阳区辛街乡大官市村东侧，与已建杭瑞高速相接，该方案对应的路线方案为 K 线；起点接线方案二位于隆阳区辛街乡老吴寨村西北侧，与规划的昌保高速相接，该方案对应的路线方案为 A 线；起点接线方案三位于隆阳区蒲缥镇杨三寨村东侧，与已建杭瑞高速相接，该方案对应的路线方案为 B 线；起点接线方案四位于隆阳区蒲缥镇辛家山西侧，与已建杭瑞高速相接，该方案对应的路线方案为 C 线，如图2－5。

图 2－5 工可报告起点接线方案比较图
A 线方案与规划的昌保高速相接，可以将保山规划工贸园区与施甸县进行快速连接，两条未通车的高速公路相接，施工干扰较小，但两条

高速公路需同步实施才能发挥本项目的功能。虽然 A 线方案建设里程稍短，但需设置 1 座 5.81 km 特长隧道，总体工程规模较大，工程造价及后期运营养护成本均较高。

B 线方案虽然工程规模稍小，工程造价略省，但是施工干扰较大，保山至施甸的行车距离较长，绕行较严重，不符合本项目作为 S 41 维（西）永（德）高速公路中的一段的功能。同时 B 线方案占用土地数量较大，特别是占用良田较多，房屋及电力，电信线等拆迁工程规模也较大，B线方案与地方路网规划不相符，与规划的保山市水长工业园区，华兴工业片区存在一定的干扰。

C 线方案纵面指标较好，同时也无须废除现有的大官市立交，虽然该方案建设里程较短，但桥隧工程规模较大，工程造价较高，起点位置杭瑞高速平纵指标较低，不能满足设置立交的要求，接线立交匝道需设置隧道，立交工程规模较大。 C 线方案保山至施甸的行车距离较长，绕行较严重。

K 线方案与已通车杭瑞高速相接，需废除杭瑞高速大官市立交，K线方案的实施不受其他项目实施进度的影响，且 K 线方案可以将保山市主城区与施甸县城进行快速连接。作为S41维（西）永（德）高速公路中的一段， K 线方案更加顺直， K 线方案无须设置特长隧道，总体工程规模较小，工程造价及后期运营养护成本均较低。 K 线方案主要占用坡地或低产田地，拆迁工程规模也较小。

结合路线方案综合比选，本项目工程可行性研究报告最终确定 K 线方案为本项目推荐方案。对应的起点接线方案为方案一，即方案一为本项目的起点接线方案，如图2－6。

本项目初步设计，施工图设计起点接线方案在工程可行性研究报告研究结论的基础上开展，即本项目起点位于保山市隆阳区辛街乡大官市村东侧，设置大官市立交与已建杭瑞高速相接。受村庄，地形条件，杭瑞高速大官市隧道等的限制，需拆除杭瑞高速现有大官市半互通落地立交，且大官市立交主要功能为满足施甸县城车辆经 S229线上下 G56 杭瑞高速的需要，保施高速建成后，施甸县城车辆将直接通过保施高速与 G56进行交通转换，少量的大官市村附近车辆可通过国道 320 线转换之

后由既有汉庄立交或蒲缥立交上下高速公路，因此，根据工程可行性研究报告，初步设计，施工图设计等多阶段论证研究，按照工程可行性研究报告批复，初步设计批复及施工图设计审查意见等的精神，需拆除既有大官市半互通立交，改造为高接高的大官市枢纽立交。另外，保山市绕城高速于黑泥田村附近设置黑泥田立交与杭瑞高速相接，黑泥田立交中心与本项目大官市立交中心间距为 2.8 km ，大官市立交通过设置辅助车道与黑泥田立交加减速车道连通，形成复合式立交。

图 2－6 项目起点位置图

4．本项目止点临时收费站及临时平交口设置情况

本项目止点位于施甸县城东侧莽中寨附近，近期接施甸至卡斯公路，远期接规划施甸至链子桥高速公路。施甸至链子桥高速公路目前处于工程可行性研究报告编制阶段，鉴于其实施时间与本项目不同步，考虑在本项目止点附近 K 3 3＋265．11 处设置临时收费站，为了尽量避免产生废置工程，在满足交通量通行的前提下，收费站总宽度利用标准路基宽度进行布设。另外，路线止点通过设置临时平交口与施卡公路进行连接，待施甸至链子桥高速公路实施，高速公路贯通后，将对施卡公路进行改移，与高速公路形成分离式交叉。临时收费站和临时平交口在实施过程中，需根据施甸至链子桥高速公路实施进度确定具体建设方案，如两条高速公路能够同步通车，可将临时收费站和临时平交口取消。

2．1．2 任务依据

（1）《S41 维（西）永（德）高速公路保山至施甸段工程可行性研究报告》及《S41 维（西）永（德）高速公路保山至施甸段两阶段初步设计》。
（2）《云南省发展和改革委员会关于保山至施甸高速公路可行性研究报告的批复》（云发改基础〔2016〕1503号）。
（ 3 ）《云南省交通运输厅关于保山至施甸高速公路初步设计的批复》 （云交基建〔2016〕917号）。
（4）本项目勘察设计合同。
（5）建设部建标〔2002〕99号《关于发布〈工程建设标准强制性条文〉（公路工程部分）的通知》。
（6）现行部颁标准，规范及规程等。
（7）《公路工程建设项目设计文件编制办法》《公路工程基本建设项目概预算编制办法》《施工图设计图表示例》等。
（8）本项目有关文件，函件，会议纪要等。
（9）本项目前期相关的资料图表和批复意见（水土保持，环境影响评价，压覆矿产资源评估，地质灾害危险性评估，地震场地安全性评价，社会稳定风险评估报告，文物调查，林业，土地预审等）。

2．1．3 测设经过

2016年10月通过公开招标，最终确定本项目勘察设计由云南省交通规划设计研究院承担。
（1）按照合同文件的要求，云南省交通规划设计研究院接受任务后立即制定了详细的工作大纲，编制了《项目技术指导书》《勘察设计要点》等。
（2）为做好本项目的勘察设计工作，项目业主多次组织相关部门领导和专家认真听取我院设计方案汇报，为勘察设计提出了很好的建设性意见和建议。
（3）2016年10月下旬完成本项目初步设计（送审文件）。
（4）2016年10月29—30日，云南省交通运输厅组织对本项目初步设计进行审查，我院根据审查意见进行修改完善，完成初步设计，于 2016年 12 月上报初步设计补充资料。
（5）2016年12月28日，云南省交通运输厅对本项目初步设计进行了批复。
（6）本项目施工图勘察设计在认真研究初步设计路线，路基路面，桥涵，隧道，交叉等各专业方案及设计资料的基础上，结合初步设计批复及审查意见进行。
（7）在施工图勘察设计过程中，我院多次与项目业主，沿线各级政府及相关部门进行沟通，对相关建议和意见进行了充分研究。
（8）2017年3月，完成本项目施工图设计（送审文件）。
（9）2017年3月26－27日省交通运输厅组织对本项目施工图设计文件进行审查，我院根据审查意见进行修改完善，于2017年6月完成施工图设计最终资料。

整个勘察设计过程得到了云南省交通运输厅，项目业主，沿线各级政府的大力支持和帮助，他们对本项目勘察设计提出了许多宝贵意见。

2．1．4 技术标准，技术指标

根据本项目工程可行性研究报告，两阶段初步设计和中华人民共和国行业标准《公路工程技术标准》（JTG B01—2014），结合本项目在路网中的功能，地位及沿线国民经济和社会经济发展的需要，本项目主线按双向四车道高速公路标准建设，设计速度 $80 \mathrm{~km} / \mathrm{h}$ ，路基宽度 25.5 m ，由旺立交联络线按双向两车道二级公路标准建设，设计速度 $60 \mathrm{~km} / \mathrm{h}$ ，路基宽度 10.0 m ，施甸立交联络线按双向四车道一级公路标准建设，设计速度 $60 \mathrm{~km} / \mathrm{h}$ ，路基宽度 20.0 m 。主要技术指标如表 2－1。

