# 电工电子技术 

## 主 编 廖化容 王海军 王德春

副主编 刘 阳 牟 刚 邓 勇 李秀玲

西南交通大学出版社
－成 都•

## 前 PREFACE

电工电子技术是高等职业院校非电类专业的一门技术基础课程，它是将电工技术与电子技术的基础知识，基本技能及应用知识按非电类专业的培养目标和要求有机地整合而成的一门电类综合课程。通过本课程的学习，应达到以下两个方面的目标：一是使学生具有学习专业需要的基本知识和技能；二是使学生对选用常用电气元器件和设备具有一定的知识和能力，与从事电气工作人员有必需的共同语言，使学生的综合职业能力和全面素质得到提高。

本书为校企合作联合编审的教材，邀请了中国铁路成都局集团有限公司黄晓波高级工程师，重庆公共运输职业学院唐春林教授担任联合主审，还邀请了具有多年一线工作经验的老师对教材内容参与审定。

本书内容包括 10 章，每章内容安排如下：
第 1 章介绍直流通路，首先讲解电路的基本概念和基本定律，然后介绍直流电路常见的几种电路分析法；第2章介绍正弦交流电路，首先讲解正弦交流电的基本概念和基本定律，然后介绍单相正弦交流电常见的几种电路分析法，对三相交流电简单介绍；第3章介绍磁路与变压器，首先介绍磁路的基本概念和基本定律，然后介绍变压器的基本结构及工作原理；第4章介绍三相异步电动机及其控制线路，首先介绍低压电器的工作原理，然后介绍三相异步电动机

的工作原理，再介绍其控制电路的安装调试，然后介绍变压器的基本结构及工作原理；第5章介绍常用半导体元器件，首先介绍二极管，三极管的工作特性，使用电工工具来判别的方法；第 6 章介绍基本放大电路，主要介绍基本放大电路的组成，工作原理及其分析方法；第7章介绍集成运算放大器，主要介绍集成运算放大电路的基本应用；第 8 章介绍直流稳压电源，主要介绍直流稳压电源的组成及工作原理；第 9 章介绍门电路与组合逻辑电路，主要介绍数制的相互转换，基本门电路的逻辑功能，逻辑符号，真值表和逻辑表达式等；第 10 章介绍触发器和时序逻辑电路，首先介绍触发器的工作原理，然后介绍时序逻辑电路的分析方法。

本书由重庆公共运输职业学院廖化容，王海军，王德春担任主编，刘阳，牟刚，邓勇，李秀玲担任副主编。廖化容对本书的内容和编写思路进行了总体策划，并对全书进行统稿。廖化容，王德春编写了第3，4，6，7，10章；王海军，牟刚编写了第 $2, ~ 5, ~ 8, ~ 9$ 章；刘阳，邓勇编写了第 1 章；陆军工程大学通信士官学校李秀玲参与了 PPT 和教学资源的制作；张俊佳，朱文艳参与了第3， 4 章的编写；邓雄，张莉参与了第 6，8章的编写。此书在编写过程中，得到了重庆公共运输职业学院徐晓灵，蔡娟，马羊琴，张芳莉，杨规雨，卢文，罗苹，龚清林，王骁等老师的支持和帮助，在此一并表示感谢。

为便于教师更好地使用本书教学，也为学生更好地学习掌握本书知识，本书增加了 PPT，微视频等教学资源。

由于编者水平和经验有限，书中难免有不足之处，恳请读者批评指正。

## 编 者

2020年9月


本书 PPT 下载

## 目录

1 直流通路 ..... 001
1.1 电路及其模型 ..... 001
1.2 电路的基本物理量 ..... 002
1.3 电路的基本元器件 ..... 006
1.4 电路的基本状态 ..... 013
1.5 电阻的串并联 ..... 015
1.6 基尔霍夫定律 ..... 017
1.7 电路的分析方法 ..... 021
1.8 万用表的使用 ..... 029
2 正弦交流电路 ..... 037
2.1 正弦交流电的基本概念 0 错误！未定义书签。
2.2 正弦交流电的相量表示法 0 错误！未定义书签。
2.3 电阻，电感，电容电路 0 错误！未定义书签。
2.4 正弦交流电路中的功率 0 错误！未定义书签。
2.5 功率因数的提高及意义 0 错误！未定义书签。
2.6 三相交流电路 0 错误！未定义书签。
3.1 磁 路 0 错误！未定义书签。
3.2 变压器 0 错误！未定义书签。
3.3 常用变压器 0 错误！未定义书签。
4 三相异步电动机及其控制线路106
4.1 常用低压电器 错误：未定义书签。
4.2 三相异步电动机 错误！未定义书签。
4.3 三相异步电动机的控制线路 错误！未定义书签。
5 常用半导体元器件 ..... 137
5.1 半导体的基础知识与 PN 结 ..... 138
5.2 二极管及其应用 ..... 143
5.3 三极管及其应用 ..... 153
5.4 绝缘栅型场效应管 ..... 162
6 基本放大电路 ..... 169
6.1 基本放大电路的组成及各元件的作用 ..... 169
6.2 共发射极放大电路的分析 ..... 172
6.3 放大电路的微变等效电路分析法 ..... 178
6.4 共集电极放大电路和共射极放大电路 ..... 184
6.5 多级放大电路 ..... 189
6.6 差分放大电路 ..... 193
7 集成运算放大器 ..... 201
7.1 放大电路的负反馈 ..... 201
7.2 集成运算放大器 ..... 207
7.3 集成运算放大器的应用 ..... 210
8 直流稳压电源 ..... 216
8.1 直流稳压电源概述 ..... 217
8.2 整流电路 ..... 220
8.3 滤波电路 ..... 225
8.4 稳压电路 ..... 227
9 门电路与组合逻辑电路 ..... 235
9.1 逻辑代数及其应用 ..... 235
9.2 卡诺图及其应用 ..... 242
9.3 组合逻辑电路 ..... 247
9.4 译码器 ..... 255
9.5 编码器 ..... 264
9.6 数据选择器 ..... 268
10 触发器与时序逻辑电路 ..... 274
10.1 触发器 ..... 274
10.2 时序逻辑电路 ..... 280
10.3 寄存器 ..... 286
10.4 计数器 ..... 287
$10.5 \mathrm{D} / \mathrm{A}$ 和 $\mathrm{A} / \mathrm{D}$ 转换器 ..... 289
10.6555 定时器 ..... 296
参考文献 ..... 303

## 1 <br> 直流通路

## 【学习目标】

（1）理解电路的组成及电路模型的概念。
（2）掌握电流和电压的参考方向。
（3）掌握电路的三种工作状态。
（4）理解电阻元件，电感元件及电容元件的相关知识。
（5）掌握电阻的串联与并联。
（6）掌握电压源与电流源的等效变换。
（7）掌握基尔霍夫电流定律和电压定律。
（8）会应用支路电流法，叠加定理，戴维南定理，电压源和电流源的等效变换等方法求解电路。
（9）学会万用表的使用。

## 1.1 电路及其模型

## 1．1．1 电 路

电路是电流的通路，它是由电源，负载和中间环节三部分按一定方式组合而成的。其中，电源是指能将其他形式的能量转换成电能并为电路提供能量的装置，如干电池，蓄电池及发电机等；


电 路负载是指可在电路中接收电能并将电能转换成其他形式能量的设备，如电灯，电视机及电炉等；中间环节是指连接电源和负载的部分，如导线，开关及各种继电器等。

在实际应用中，电路的种类繁多，形式和结构也各不相同，但就其作用而言，主要可概括为以下两方面：
（1）实现电能的传输，分配和转换。例如，照明电路中，电源通过导线将电能传递给电灯，电灯再将电能转换为光能和热能。
（2）实现信号的传递和处理。例如，电视机或收音机将接收到的电信号经过调频，滤波和放大等环节处理后，转换为图像和声音信号。

## 1．1．2 电路的模型

实际电路是由各种作用不同的电路元件组成的，而实际的电路元件在工作时的电磁性质往往比较复杂，大多数电路元件都具有多种电磁性质。因此，为了方便对实际电路进行分析和研究，通常将实际电路元件理想化（模型化），突出其主要电磁性质，忽略次要性质，近似看作理想电路元件。例如，电阻元件，电感元件和电容元件等都是理想电路元件。由理想电路元件组成的电路称为实际电路的电路模型。图1．1所示为手电筒电路，干电池在对外提供电压的同时，其内部也有电阻消耗能量，故在电路模型中可用电动势 $E$和内阻 $R_{0}$ 串联表示；灯在通电流时，除了具有消耗电能的性质（电阻性）外，还具有电感性，但由于其电感性很弱，可忽略不计，故在电路模型中可用一电阻元件 $R_{\mathrm{L}}$ 表示；导线的电阻很小，可忽略不计，故在电路模型中可看作是一无电阻的理想导体。

（a）电气图

（b）电路模型

图1．1 手电筒电路

## 1.2 电路的基本物理量

## 1．2．1 电 流

在电场力的作用下，电荷有规则地定向移动形成了电流。电流的大小为单位时间内通过导体横截面的电量，称为电流强度，简称电流，用 $i$ 表示，即


电路的基本物理量

$$
\begin{equation*}
i=\frac{\mathrm{d} q}{\mathrm{~d} t} \tag{1.1}
\end{equation*}
$$

式（1．1）表示电流是随时间而变化的，是时间的函数。如果电流不随时间变化，则这种电流称为恒定电流，简称直流。直流常用大写字母 $I$ 表示，所以式（1．1）可改写为

$$
\begin{equation*}
I=\frac{Q}{t} \tag{1.2}
\end{equation*}
$$

式中，$Q$ 是在时间 $t$ 内通过导体横截面 $S$ 的电荷量。

在国际单位制中，电流的单位为安培（A）。常用的电流单位还有千安（kA），毫安 （ mA ）和微安（ $\mu \mathrm{A}$ ）。

我们习惯上规定正电荷运动的方向或负电荷运动的相反方向为电流的方向（实际方向）。电流的方向是客观存在的。但在分析较为复杂的直流电路时，往往难以事先判断某支路中电流的实际方向；对于交流信号来讲其方向随时间而变，在电路图上也无法用一个箭标来表示它的实际方向。为此，在分析与计算电路时，常可任意选定某一方向作为电流的正方向，也称为参考方向。所选的电流的正方向并不一定与电流的实际方向一致。当电流的实际方向与其正方向一致时，则电流为正值［见图1．2（a）］反之，当电流的实际方向与其正方向相反时，则电流为负值［见图1．2（b）］。因此，在正方向选定之后，电流之值才有正负之分。

（a）$I>0$

（b）$I<0$

图1．2 电流的参考方向和实际方向
电流的正方向除用箭标表示外，还可以用双下标表示。如图1．2（a）中的电流还可以表示为 $I_{\mathrm{ab}}$ ，即正方向是由 a 指向 b 的电流。如果正方向选定为由 b 指向 a ，则两者之间相差一个负号，即

$$
\begin{equation*}
I_{\mathrm{ab}}=-I_{\mathrm{ba}} \tag{1.3}
\end{equation*}
$$

## 1．2．2 电位与电压

在介绍电压之前，我们首先要了解一下电位的概念。在电路中任选一点作为参考点，则电场力把单位正电荷从某点移动到参考点所做的功称为该点的电位，用 $V$ 表示。如果任选电路中一点 o 为参考点，那么电路中 a 点的电位 $V_{\mathrm{a}}$ 就等于电场力将单位正电荷从 a点移到参考点 $o$ 所做的功，即

$$
V_{\mathrm{a}}=\frac{W_{\mathrm{ao}}}{Q}
$$

一般参考点的电位等于零，所以，参考点又叫零电位点。
实际中，如果在电路中任选一个参考点并令它的电位为零，则电路中某一点的电位就应等于该点到参考点之间的电压。可见，电位实质上也是电压，只不过是对参考点之间的电压。所以，电位的单位也是伏特（V）。电位是一个相对量。

理论上参考点可以任意选取。而实际电力电路中通常都选大地为参考点，即零电位点，用符号＂$\underline{=} "$ 表示。实际电子线路中通常以多条支路汇合的公共点或者金属底板，机壳等作为参考点，用符号＂」＂表示。

规定：高于参考点的电位为正值，低于参考点的电位为负值。

电场力把单位正电荷从 a 点移动到 b 点所做的功称为 $\mathrm{a}, ~ \mathrm{~b}$ 两点间的电压，用 $u_{\mathrm{ab}}\left(U_{\mathrm{ab}}\right)$表示，即

$$
\begin{equation*}
u_{\mathrm{ab}}=\frac{\mathrm{d} w}{\mathrm{~d} q} \tag{1.4}
\end{equation*}
$$

式中， $\mathrm{d} w$ 为电场力将 $\mathrm{d} q$ 的正电荷从 a 点移动到 b 点所做的功，单位为 J 。
习惯上规定电压的实际方向为由高电位（＂＋＂极性）端指向低电位（＂－＂极性）端，即电位降低的方向。因此，电路中两点间的电压也可用两点间的电位差来表示，即

$$
\begin{equation*}
U_{\mathrm{ab}}=V_{\mathrm{a}}-V_{\mathrm{b}} \tag{1.5}
\end{equation*}
$$

在国际单位制中，电位和电压的单位相同，都为伏特（V）。常用的电压单位还有千伏（ kV ），毫伏（ mV ）和微伏（ $\mu \mathrm{V}$ ）。

电路中两点间的电压是不变的，而各点的电位则随参考点的不同而不同。因此，在研究同一电路系统时，只能选取一个电位参考点。

电压的参考方向与电流类似，分析电路时，也需先任意选定一个方向作为参考方向，如图1．3所示。

（ a ）$U>0$

（ b）$U<0$

图1．3 电压的参考方向和实际方向
若电压的实际方向与参考方向一致，则电压为正值；若电压的实际方向与参考方向相反，则电压为负值。

电压的参考方向可以用箭头表示，可以用＂＋＂＂－＂表示，还可以用双下标表示。
在分析计算电路时，必须首先标出电流，电压的参考方向。参考方向一经选定，在分析电路过程中就不能再变动，并以此标准进行分析计算，最后根据计算结果的正负来确定电流和电压的实际方向。本书中在电路图上所标出的电流和电压方向均为参考方向。

一般来说，同一段电路上电流和电压的参考方向彼此独立无关，可以各自选定。但为了方便分析，通常将电流和电压的参考方向选得一致，称为关联参考方向，如图1．4（a）所示；反之，称为非关联参考方向，如图1．4（b）所示。这时，只需标出电流或电压中其中一个的参考方向即可。

（ a ）$U, ~ I$ 为关联参考方向

（b）$U, ~ I$ 为非关联参考方向

图 1.4 关联参考方向和非关联参考方向

## 1．2．3 电动势

电动势是指电源内部的非电场力把单位正电荷由低电位 b 端移到高电位 a 端所做的功，用 $e(E)$ 表示，即

$$
e=\frac{\mathrm{d} w}{\mathrm{~d} q}
$$

电动势的实际方向为由低电位端指向高电位端，即电位升高的方向。因此，电动势和电压的实际方向相反，如图 1.5 （a）所示。在开路情况下，电源电动势与电源两端的电压大小相等，方向相反，如图 1.5 （b）所示。

（a）闭路电压与电动势的关系

（b）开路时电压与电动势的关系

图1．5 电压与电动势的关系

## 1．2．4 电功和电功率

电功是电流所做的功，电流做功的实质是把电能转换成其他形式的能量。电场力推动电荷做功，发生了能量的转换。在国际单位制中，电功的单位为焦耳（ J ）。有时电功也用度（ $\mathrm{kW} \cdot \mathrm{h}$ ）表示。 1 度 $=1 \mathrm{~kW} \cdot \mathrm{~h}=3.6 \times 10^{6}$ 。

功率是指电能量对时间的变化率，也就是在单位时间内电路吸收的电能，用 $p(P)$表示。在交流电路中，功率的计算公式为

$$
\begin{equation*}
p=\frac{\mathrm{d} w}{\mathrm{~d} t}=\frac{\mathrm{d} w}{\mathrm{~d} q} \frac{\mathrm{~d} q}{\mathrm{~d} t}=u i \tag{1.6}
\end{equation*}
$$

在直流电路中有

$$
\begin{equation*}
P=U I \tag{1.7}
\end{equation*}
$$

在国际单位制中，功率的单位为瓦特（W）。常用的功率单位为千瓦（ kW ）。当元件中流过的电流与其两端电压为关联参考方向时，若 $P=U I>0$ ，则说明流经元件的电流实际方向与元件两端电压的实际方向是一致的，电场力对正电荷做了功，元件吸收功率；若 $P=U I<0$ ，则说明流经元件的电流实际方向与元件两端电压的实际方向是相反的，一定有外力克服电场力做了功，元件发出功率。当元件中流过的电流与其两端电压为非关联参考方向时，上述结论正好相反。

电路元件在 $t_{0} \sim t$ 时间内所消耗或提供的能量 $W$ 为

$$
\begin{equation*}
W=\int_{t_{0}}^{t} p \mathrm{~d} t \tag{1.8}
\end{equation*}
$$

直流时：

$$
\begin{equation*}
W=P\left(t-t_{0}\right) \tag{1.9}
\end{equation*}
$$

例1．1 在如图1．6所示直流电路中，$U_{1}=5 \mathrm{~V}, U_{2}=-8 \mathrm{~V}, U_{3}=6 \mathrm{~V}, I=4 \mathrm{~A}$ ，求各电路元件吸收或发出的功率 $P_{1}, ~ P_{2}, ~ P_{3}$ ，并求整段电路的功率 $P$ 。


图1．6 例1．1图
解：
对元件 1 ，其电流和电压为关联参考方向，且 $P_{1}=U_{1} I=5 \times 4=20(\mathrm{~W})>0$ ，所以，元件 1吸收功率 20 W 。

对元件 2 ，其电流和电压为非关联参考方向，且 $P_{2}=-U_{2} I=8 \times 4=32(\mathrm{~W})>0$ ，所以，元件 2 吸收功率 32 W 。

对元件 3，其电流和电压为非关联参考方向，且 $P_{3}=-U_{3} I=-6 \times 4=-24(\mathrm{~W})<0$ ，所以，元件 3 发出功率 24 W 。

设吸收功率为正，发出功率为负，则整段电路的功率 $P$ 为

$$
P=20+32-24=28(\mathrm{~W})
$$

## 1.3 电路的基本元器件

## 1．3．1 电阻元件，电感元件及电容元件

## 1．电阻元件

电阻元件是一种消耗电能的元件，用 $R$ 表示，单位为欧姆（ $\Omega$ ）。


电路的基本元器件电阻元件可分为线性电阻和非线性电阻。

线性电阻在电路中的符号如图1．7（a）所示，其两端的电压与流过的电流成正比。即

$$
\begin{equation*}
u=i R \tag{1.10}
\end{equation*}
$$

式（1．10）即为著名的欧姆定律。线性电阻 $R$ 是一个与电压和电流无关的常数，其电

压和电流的关系曲线（即伏安特性曲线）是一条通过原点的直线，如图1．7（b）所示。式（1．10）还可写为

$$
\begin{equation*}
i=\frac{1}{R} u=G u \tag{1.11}
\end{equation*}
$$

式中，$G$ 为电导，单位为西门子 $(S)$ 。

（a）线性电阻符号

（b）线性电阻伏安特性曲线

图 1.7 线性电阻的符号及伏安特性
非线性电阻在电路中的符号如图1．8（a）所示，它不遵循欧姆定律，其两端的电压与流过的电流不成正比关系。非线性电阻 $R$ 不是一个常数，它随电压和电流的变化而变化，其伏安特性曲线是一条曲线，如图 1.8 （b）所示。

（a）非线性电阻符号

（b）非线性电阻伏安特性

图1．8 非线性电阻的符号及伏安特性
工业上常用电阻器实现限流，分压和分流等。
电阻元件的电压和电流同时出现，同时消失，即电阻元件的电压和电流无＂记忆＂性，电压和电流均可以跃变。

## 2．电感元件

电感元件工作时，能够将电能转换为磁场能量储存起来，它是一种储能元件。如图 1.9 （a）所示，电感元件是由导线绕制而成的，它在电路中的符号如图1．9（b）所示。设电感线圈有 $N$ 匝，当线圈通过电流 $i$ 时，在线圈内部将产生磁通 $\Phi$ 。磁通与线圈匝数的乘积称为磁通链，用 $\psi$ 表示，磁通链 $\psi=N \Phi$ 。在国际单位制中，磁通 $\Phi$ 与磁通链 $\psi$ 的单位都为韦伯（Wb）。

（a）示意图

（b）符号

图 1.9 电感的示意图及符号
当磁通 $\Phi$ 与磁通链 $\psi$ 的参考方向与电流 $i$ 的参考方向之间符合右手螺旋定则时，有

$$
\begin{equation*}
\Psi=L i \tag{1.12}
\end{equation*}
$$

式中，$L$ 为线圈的自感或电感，单位为亨利（H）。
当磁通发生变化时，线圈中将会产生感应电动势。根据电磁感应定律可知，感应电动势 $e_{L}$ 为

$$
\begin{equation*}
e_{L}=-N \frac{\mathrm{~d} \Phi}{\mathrm{~d} t}=-\frac{\mathrm{d} \Psi}{\mathrm{~d} t} \tag{1.13}
\end{equation*}
$$

将式（1．12）代人式（1．13）后可得

$$
\begin{equation*}
e_{L}=-L \frac{\mathrm{~d} i}{\mathrm{~d} t} \tag{1.14}
\end{equation*}
$$

由式（1．14）可以看出，电感元件的电压与电流的变化率成正比，只有电流发生变化时，才会产生感应电动势。在直流电路中，电流不随时间变化，因此，$e_{L}=0$ 时，电感元件相当于短路。

电感元件在 0 到 $t$ 时间内所储存的磁场能量 $W_{L}$ 为

$$
\begin{equation*}
W_{L}=\int_{0}^{t} p \mathrm{~d} t=\int_{0}^{t} u i \mathrm{~d} t=\int_{0}^{t} L i \frac{\mathrm{~d} i}{\mathrm{~d} t} \mathrm{~d} t=L \int_{0}^{i} i \mathrm{~d} i=\frac{1}{2} L i^{2} \tag{1.15}
\end{equation*}
$$

由式（1．15）可以看出，$L$ 一定时，磁场能量 $W_{L}$ 随电流的增大面增大。
提示：电感元件的电流只能连续变化，不能跃变；电感元件的电流具有＂记忆＂过去电压的作用。

## 3．电容元件

电容元件工作时，能够将电能转换为电场能量储存起来，它也是一种储能元件。电容元件是由两块金属板间隔以不同的绝缘材料而制成的，它在电路中的符号如图 1.10 所示。电容元件所储存的电量 $q$ 与其两端的电压 $U$ 成正比，即

$$
C=\frac{q}{u}
$$

其中 $C$ 称为该元件的电容，单位为法拉（ F ），简称法。法的单位较大，在实际使用中常采用微法（ $\mu \mathrm{F}$ ）和皮法（ pF ），其换算关系为： $1 \mathrm{~F}=10^{6} \mu \mathrm{~F} ; 1 \mu \mathrm{~F}=10^{6} \mathrm{pF}$ 。


图 1.10 电容符号
当电容元件两端的电压 $u$ 与流入正极板的电流 $i$ 的参考方向为关联参考方向时，有

$$
\begin{equation*}
i=\frac{\mathrm{d} q}{\mathrm{~d} t}=C \frac{\mathrm{~d} u}{\mathrm{~d} t} \tag{1.17}
\end{equation*}
$$

由式（1．17）不难看出，电容元件的电流与电压的变化率成正比，只有电容元件上的电压发生变化时，电容两端才有电流。在直流电路中，电容两端的电压不发生变化，因此，$i=0$ ，电容元件相当于开路。

电容元件在 0 到 $t$ 时间内所储存的电场能量 $W_{C}$ 为

$$
\begin{equation*}
W_{C}=\int_{0}^{t} p \mathrm{~d} t=\int_{0}^{t} u i \mathrm{~d} t=\int_{0}^{t} C u \frac{\mathrm{~d} u}{\mathrm{~d} t} \mathrm{~d} t=C \int_{0}^{u} u \mathrm{~d} u=\frac{1}{2} C u^{2} \tag{1.18}
\end{equation*}
$$

由式（1．18）可以看出，$C$ 一定时，电场能量 $W_{C}$ 随电压的增大而增大。
提示：电容元件的电压只能连续变化，不能跃变；电容元件的电压具有＂记忆＂过去电流的作用。

## 1．3．2 电压源与电流源

电路的正常工作离不开电源。实际电源可以用两种不同的电路模型来表示：一种是用电压形式来表示的，称为电压源；另一种是用电流形式来表示的，称为电流源。

## 1．电压源

任何一个电源都含有电动势 $E$ 和内阻 $R_{0}$ ，从电路结构上来看，它们是紧密结合在一起的。所谓理想电压源，在直流电路中是指它的两端电压总能保持某一恒定值，而与通过它的电流无关（简称恒压源）。但为了便于对电路进行分析与计算，往往将它们分开，这样由电动势 $E$ 和内阻 $R_{0}$ 串联组成的电源电路模型称为电压源，如图1．11所示。


图1．11 电压源

由图1．11 所示可以看出，电压源对外提供的电压 $U$ 与电流 $I$ 关系为

$$
\begin{equation*}
U=E-I R_{0} \tag{1.19}
\end{equation*}
$$

根据式（1．19）可作出电压源的外特性曲线，如图1．12中 a 线所示。电压源开路时， $I=0, U=U_{\mathrm{S}}=E$ ；电压源短路时，$U=0, I=I_{\mathrm{S}}=E / R_{0}$ 。显然，内阻 $R_{0}$ 越小，外特性曲线越平坦。


图1．12 电压源的外特性曲线
当 $R_{0}=0$ 时，输出电压 $U$ 恒等于电动势 $E$（或 $U_{\mathrm{S}}$ ）为一定值，与流过的电流 $I$ 无关，其电流 $I$ 由负载电阻 $R$ 及输出电压 $U$ 本身确定。这样的电压源称为理想电压源或恒压源，其符号如图 1.13 所示。其中，图1．13（a）既可表示直流恒压源，也可表示交流恒压源；而图 1.13 （b）仅表示直流恒压源。理想电压源的外特性曲线是一条与横轴平行的直线，如图 1.12 b线所示。

（a）

（b）

图 1.13 理想电压源
理想电压源是一种理想的情况，实际中并不存在。但如果电源的内阻 $R_{0}$ 远小于负载电阻 $R$ ，即 $R_{0} \ll R$ ，则内阻电压降 $R_{0} I \ll U, R_{0} I \ll U$ ，于是，电压源对外提供的电压 $U \approx E$ ，基本保持恒定，此时可以认为是理想电压源。例如，稳压电源在其工作范围内就可认为是一理想电压源。

## 2．电流源

如将式（1．19）两端同除以 $R_{0}$ ，则可得

$$
\frac{U}{R_{0}}=\frac{E}{R_{0}}-I=I_{\mathrm{s}}-I
$$

即

$$
\begin{equation*}
I_{\mathrm{S}}=\frac{U}{R_{0}}+I \tag{1.20}
\end{equation*}
$$

根据式（1．20）可作出如图1．14 所示电路图。其中，由电流 $I_{\mathrm{s}}$ 和内阻 $R_{0}$ 并联组成的电源电路模型称为电流源。电流源的外特性曲线如图1．16所示 a 线。电流源开路时，$I=0$ ， $U=U_{\mathrm{S}}=I_{\mathrm{S}} R_{0}$ ；电流源短路时，$U=0, I=I_{\mathrm{S}}$ 。显然，内阻 $R_{0}$ 越大，外特性曲线越陡。


图 1.14 电流源
当 $R=\infty$ 时，电 $I$ 恒等于电流 $I_{\mathrm{s}}$ ，为一定值，与电流源两端的电压 $U$ 无关，其电压 $U$由负载 $R$ 及电流 $I$ 本身确定。这样的电流源称为理想电流源或恒流源，其符号如图 1.15所示。理想电流源的外特性曲线是一条与纵轴平行的直线，如图 1.16 所示 b 线。


图 1.15 理想电流源


图 1.16 电流源的外特性曲线

理想电流源也是一种理想的情况，实际中并不存在。但如果电源的内阻 $R_{0}$ 远大于负载电阻 $R$ ，即 $R_{0} \gg R$ ，则 $I \approx I_{\mathrm{S}}$ ，基本保持恒定，此时可以认为是理想电流源。

注意：上述分析是以直流电路为例展开的。实际上，理想电压源或理想电流源中，电压或电流应为按一定规律变化的时间函数，其幅值恒定，且与电路中的其他量无关。

## 3．电压源与电流源的等效变换

一个实际电源可以用电压源表示，也可以用电流源表示，这说明电压源和电流源对同一外电路而言是等效的，可以进行等效变换，如图 1.17 所示。等效变换的条件为变换后保持输出电压和输出电流不变，即

$$
\begin{equation*}
I_{\mathrm{S}}=\frac{U_{\mathrm{S}}}{R_{0}} \text { 或 } U_{\mathrm{S}}=I_{\mathrm{S}} R_{0} \tag{1.21}
\end{equation*}
$$



图1．17 实际电源的两种模型
在对电压源和电流源进行等效变换时，还应注意以下几点：
（1）电压源和电流源的等效变换关系只是相对于外电路而言的，而对电源内部是不等效的。例如，当电源两端处于开路状态时，对电压源，$I=0$ ，电源内阻 $R_{0}$ 不损耗功率；而对电流源，电源内部仍有电流，其内阻 $R_{0}$ 损耗功率。
（2）等效变换时，两电源的参考方向要一一对应。
（3）理想电压源与理想电流源之间无等效关系。因为理想电压源的内阻 $R_{0}=0$ ，若能等效变换，则变换后电流源的短路电流 $I_{\mathrm{S}}=\frac{U_{\mathrm{S}}}{R_{0}}=\infty$ ；同样，理想电流源的内阻 $R_{0}=\infty$ ，若能等效变换，则变换后电压源的开路电压 $U_{\mathrm{S}}=I_{\mathrm{S}} R_{0}=\infty$ ，它们都不能得到有限值，是没有意义的。
（4）任何一个电动势为 $E$ 的理想电压源和某个电阻 $R$ 串联的电路，都可化为一个电流为 $I_{\mathrm{S}}$ 的理想电流源和这个电阻并联的电路，两者是等效的。即

$$
\begin{equation*}
I_{\mathrm{S}}=\frac{E}{R_{0}} \quad \text { 或 } \quad E=I_{\mathrm{S}} R_{0} \tag{1.22}
\end{equation*}
$$

例1．2 如图1．18（a）所示，已知 $U_{\mathrm{S} 1}=24 \mathrm{~V}, R_{01}=4 \Omega, U_{\mathrm{S} 2}=30 \mathrm{~V}, R_{02}=6 \Omega$ ，试计算其等效电压源的电压 $U_{\mathrm{S}}$ 和内电阻 $R_{0}$ 。


图 1.18 例 1.2 图
解：
先将两个电压源等效变换为电流源，如 1.18 （b）所示，其中

$$
I_{\mathrm{S} 1}=\frac{U_{\mathrm{S} 1}}{R_{01}}=\frac{24}{4}=6(\mathrm{~A})
$$

$$
I_{\mathrm{S} 2}=\frac{U_{\mathrm{S} 2}}{R_{02}}=\frac{30}{6}=5(\mathrm{~A})
$$

然后，再将两个电流源合并为一个等效电流源，如1．18（c）所示，其中

$$
\begin{aligned}
& I_{\mathrm{S}}=I_{\mathrm{S} 1}+I_{\mathrm{S} 2}=6+5=11(\mathrm{~A}) \\
& R_{0}=\frac{R_{01} R_{02}}{R_{01}+R_{02}}=\frac{4 \times 6}{4+6}=2.4(\Omega)
\end{aligned}
$$

最后，再将这个等效电流源变换为等效电压源，如 1.18 （d）所示，其中

$$
\begin{aligned}
U_{\mathrm{S}} & =R_{0} I_{\mathrm{S}}=2.4 \times 11=26.4(\mathrm{~V}) \\
R_{0} & =2.4(\Omega)
\end{aligned}
$$

## 1.4 电路的基本状态

在电源与负载通过中间环节连接成电路后，电路可能处于通路，开路和短路三种不同的工作状态。下面以简单直流电路为例来分析这三种工作状态。

## 1．通路工作状态

如图 1.19 所示，将开关合上，接通电源与负载，电路即处于通路工作状态，又称为有载工作状态。


电路的基本状态

根据欧姆定律可知，电路中的电流 $I$ 为

$$
I=\frac{E}{R_{0}+R}
$$

电源的输出电压 $U$ 为负载 $R$ 两端的电压，由式（1．23）和欧姆定律可得

$$
\begin{equation*}
U=E-I R_{0} \tag{1.24}
\end{equation*}
$$

由式（1．24）可知，电源的输出电压 $U$ 小于电动势 $E$ ，两者之差为电流通过电源内阻所产生的电压降 $I R_{0}$ ，电源的输出电压 $U$ 与输出电流 $I$ 之间的变化关系称为电源的外特性。其外特性曲线如图 1.20 所示。


图1．19 电路的通路状体


图1．20 电源的外部特性曲线

将式（1．24）各项同乘以电流 $I$ ，可得

$$
E I=U I+I^{2} R_{0}
$$

$$
\begin{equation*}
P_{E}=P+P_{0} \tag{1.25}
\end{equation*}
$$

式中 $P_{E}$ ——电源产生的功率， W ；
$P$ ——电源的输出功率， W ；
$P_{0}$ ——电源内阻上所损耗的功率， W 。
式（1．25）称为功率平衡式，它表明，整个电路的功率是平衡的，即由电源发出的功率等于电路各部分所消耗的功率之和。

为了保证电气设备的安全可靠和经济运行，制造厂规定了其在正常运行条件下的使用限额，称为额定值，如额定电压 $U_{\mathrm{N}}$ ，额定电流 $I_{\mathrm{N}}$ 和额定功率 $P_{\mathrm{N}}$ 等。电气设备的额定值通常标在产品的铭牌或说明书上。

电气设备在额定值情况下的工作状态称为额定工作状态，又称为满载。此时，电气设备的使用是最经济合理和安全可靠的。电气设备超过额定值的工作状态称为过载。由于温度升高需要一定时间，因此，电气设备短时间过载时，不会发生损坏；但若过载时间较长，则会大大缩短电气设备的使用寿命，严重时甚至损坏电气设备。电气设备低于额定值的工作状态称为轻载。严重轻载时，电气设备就不能正常合理地工作，或不能充分发挥其工作能力。因此，过载和严重轻载都是应该避免的。

例 1.3 一热水器的额定功率为 800 W ，额定电压为 220 V ，求该热水器的额定电流和电阻。若将其接在电压为 110 V 的电路上，该热水器的输出功率为多少？

解：其额定电流和电阻分别为

$$
\begin{aligned}
& I_{\mathrm{N}}=\frac{P_{\mathrm{N}}}{U_{\mathrm{N}}}=\frac{800}{220}=3.64(\mathrm{~A}) \\
& R=\frac{U_{\mathrm{N}}^{2}}{P_{\mathrm{N}}}=\frac{220^{2}}{800}=60.5(\Omega)
\end{aligned}
$$

若将其接在电压为 110 V 的电路上，则该热水器的输出功率 $P$ 为

$$
P=\frac{U^{2}}{R}=\frac{110^{2}}{60.5}=200(\mathrm{~W})
$$

## 2．开路工作状态

如图 1.21 所示，当开关断开时，电源未与负载接通，电路处于开路工作状态，又称为空载工作状态。此时，电路中的电流为零，电源的端电压 $U_{0}$（称为开路电压或空载电压）等于电源电动势，电源不能输出电能，电路的功率为零。如上所述，开路工作状态的特征可用下列公式表示：

$$
\left.\begin{array}{l}
I=0  \tag{1.26}\\
U=U_{0}=E \\
P_{E}=P=P_{0}=0
\end{array}\right\}
$$

## 3．短路工作状态

如图1．22所示，当电源两边的导线由于某种原因而直接相连时，电路处于短路工作状态。短路时，电源的输出电流 $I_{\mathrm{s}}$ 称为短路电流。由于电源内阻 $R_{0}$ 一般都很小，故短路电流 $I_{\mathrm{s}}$ 很大。短路时，外电阻可视为零，电源的输出电压也为零，电源所产生的电能全部被电源内阻消耗掉，故电源的输出功率为零。


图1．21 开路工作状态


图1．22 短路工作状态

如上所述，短路工作状态的特征可用下列公式表示：

$$
\left.\begin{array}{l}
U=0  \tag{1.27}\\
I=I_{\mathrm{S}}=\frac{E}{R_{0}} \\
P_{E}=P_{0}=I^{2} R_{0} \\
P=0
\end{array}\right\}
$$

由于短路电流很大，发生短路时将会烧毁电源，导线及电气设备等。因此，在实际工作中，应经常检查电气设备和线路的绝缘情况，以防止发生电源短路事故。此外，还应在电路中接入熔断器等保护装置，以便在发生短路事故时能迅速切断电路，达到保护电源及电路元器件的目的。

## 1.5 电阻的串并联

电路中，电阻的连接形式是多种多样的，其中最简单和最常用的是串联与并联。

## 1．5．1 电阻串联

如果电路中有 $n$ 个电阻顺序相接，中间没有分支，则这样的连接形式称为电阻的串联，如图1．23（a）所示。串联电路的特点是通过每个电阻的电流都相同，总电压等于各串联电阻的电压之和，即


电阻的串并联

$$
\begin{align*}
& I=I_{1}=I_{2}=\cdots=I_{n}  \tag{1.28}\\
& U=U_{1}+U_{2}+\cdots+U_{n} \tag{1.29}
\end{align*}
$$

用式（1．29）除以式（1．28）可得

$$
\begin{align*}
& \frac{U}{I}=\frac{U_{1}}{I}+\frac{U_{2}}{I}+\cdots+\frac{U_{n}}{I}  \tag{1.30}\\
& R=R_{1}+R_{2}+\cdots+R_{n} \tag{1.31}
\end{align*}
$$

$R$ 称为串联电阻的等效电阻，如图1．23（b）所示，其等效条件为在同一电压作用下电流保持不变。式（1．31）表明，串联电路的等效电阻等于各个串联电阻之和。

（a）串联电路

（b）等效电路

图 1.23 电阻的串联
以两个电阻的串联电路为例计算各个电阻的电压，可得

$$
\begin{equation*}
U_{1}=I R_{1}=\frac{R_{1}}{R_{1}+R_{2}} U, \quad U_{2}=I R_{2}=\frac{R_{2}}{R_{1}+R_{2}} U \tag{1.32}
\end{equation*}
$$

式（1．32）表明，串联电路中各电阻的电压分配与其电阻成正比。串联电路中的总功率 $P$ 为

$$
\begin{equation*}
P=U I=I^{2} R_{1}+I^{2} R_{2}+\cdots+I^{2} R_{n}=I^{2} R \tag{1.33}
\end{equation*}
$$

式（1．33）表明，$n$ 个电阻串联吸收的总功率等于各个电阻吸收的功率之和，也等于其等效电阻所吸收的功率。

电阻的串联常用于对负载电流进行限制，调整和在功率很小的电路中用作分压器等。

## 1．5．2 电阻并联

如果电路中有 $n$ 个电阻连接在两个公共点之间，则这样的连接形式称为电阻的并联，如图1．15（a）所示。并联电路的特点是每个电阻两端的电压都相等，总电流等于流过各个并联电阻的电流之和，即

$$
\begin{align*}
& U=U_{1}=U_{2}=\cdots=U_{n}  \tag{1.34}\\
& I=I_{1}+I_{2}+\cdots+I_{n}
\end{align*}
$$

用式（1．35）除以式（1．34）可得

$$
\frac{I}{U}=\frac{I_{1}}{U}+\frac{I_{2}}{U}+\cdots+\frac{I_{n}}{U}
$$

$$
\begin{equation*}
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{n}} \tag{1.37}
\end{equation*}
$$

$R$ 为并联电阻的等效电阻，如图1．24（b）所示，其等效条件也是在同一电压作用下电流保持不变。式（1．37）表明，并联电路等效电阻的倒数等于各个并联电阻的倒数之和。

（a）并联电路

（b）等效电路

图 1.24 电阻的并联
以两个电阻的并联电路为例计算各个电阻上的电流，可得

$$
\begin{equation*}
I_{1}=\frac{U}{R_{1}}=\frac{I R}{R_{1}}=\frac{R_{2}}{R_{1}+R_{2}} I, I_{2}=\frac{U}{R_{2}}=\frac{I R}{R_{2}}=\frac{R_{1}}{R_{1}+R_{2}} I \tag{1.38}
\end{equation*}
$$

式（1．38）表明并联电路中各电阻的电流分配与其电阻成反比。并联电路中的总功率 $P$ 为

$$
\begin{equation*}
P=U I=\frac{U^{2}}{R_{1}}+\frac{U^{2}}{R_{2}}+\cdots+\frac{U^{2}}{R_{n}}=\frac{U^{2}}{R} \tag{1.39}
\end{equation*}
$$

式（1．39）表明 $n$ 个电阻并联吸收的总功率等于各个电阻吸收的功率之和，也等于其等效电阻所吸收的功率。

电阻的并联主要起到分流和调节电流的作用。例如，工厂动力负载及家庭照明负载等都是以并联方式接到电网上的。

## 1.6 基尔霍夫定律

若干电路元件按一定的连接方式构成电路后，电路中各部分的电流和电压必然受到两类约束，一类约束来自元件本身的伏安特性，反映这类约束的基本定律是欧姆定律；另一类约束来自元件的相互连接方式，反映这类约束的基本定律是基尔霍夫定律。由于欧姆定律在中学已经学过，此处不再赘述，本节将主要介绍


基尔霍夫定律基尔霍夫定律。

基尔霍夫定律可分为基尔霍夫电流定律和基尔霍夫电压定律。其中，基尔霍夫电流定律主要应用于节点；基尔霍夫电压定律主要应用于回路。

## 1．6．1 电路中的几个名词

在介绍基尔霍夫定律之前，需要先了解电路中的几个名词。

## 1．支路

电路中的每一分支称为支路，一条支路中只流过一个电流称为支路电流。如图 1.25所示，电路中有三条支路：acb，adb 和 ab。其中，支路 acb 和 adb 中含有电源，称为有源支路；支路 ab 中不含电源，称为无源支路。


图 1.25 基尔霍夫定律示例

## 2．节点

电路中三条及三条以上支路的连接点称为节点。如图1．25所示，电路中有两个节点： $a$ 和 $b$ 。

## 3．回路

电路中的任一闭合路径称为回路。如图1．25所示电路中有三个回路：abca，abda 和 adbca。

## 4．网孔

将电路画在平面上，内部不含有任何支路的回路称为网孔。如图1．25所示，电路中有两个网孔：abca 和 abda。

## 1．6．2 基尔霍夫电流定律

基尔霍夫电流定律（KCL）又称为基尔霍夫第一定律，它描述了同一节点处各支路电流之间的约束关系，反映了电流的连续性，其表述为：在任一瞬时，流入某一节点的电流之和应等于流出该节点的电流之和，即

$$
\sum I_{\text {流入 }}=\sum I_{\text {流出 }}
$$

若规定流入节点的电流取正号，流出节点的电流取负号，则基尔霍夫电流定律还可表述为：在任一瞬时，通过某一节点的电流的代数和恒等于零，即

$$
\begin{equation*}
\sum I=0 \tag{1.41}
\end{equation*}
$$

如图 1.25 所示，根据式（1．41），对节点 a 有

$$
\begin{equation*}
I_{1}+I_{2}-I_{3}=0 \tag{1.42}
\end{equation*}
$$

对节点 b 有

$$
-I_{1}-I_{2}+I_{3}=0
$$

可以看出，将式（1．42）两边同乘以（ -1 ）可得到式（1．43），因此，在如图 1.25 所示电路中只对其中一个节点列电流方程即可，这个节点称为独立节点。一般来说，当电路中有 $n$ 个节点时，独立节点有 $n-1$ 个。

基尔霍夫电流定律不仅可以应用于节点，而且还可推广应用于电路中任一假设的闭合面，即在任一瞬时，通过任一闭合面的电流的代数和也恒等于零。这种假设的闭合面称为广义节点。如图 1.26 所示，虚线框内的闭合面有 3 个节点 $a, ~ b$ ，$c$ ，应用基尔霍夫电流定律有

$$
I_{1}-I_{2}+I_{3}=0
$$



图1．26 基尔霍夫电流定律的推广
例1．4 如图1．27所示，已知 $I_{1}=5 \mathrm{~A}, I_{2}=2 \mathrm{~A}, I_{3}=-3 \mathrm{~A}$ 。求 $I_{4}$ 。


图 1.27 例 1.4 图
解：对节点 a，根据基尔霍夫电流定律有

$$
I_{1}-I_{2}-I_{3}+I_{4}=0
$$

则

$$
I_{4}=-I_{1}+I_{2}+I_{3}=-5+2-3=-6(\mathrm{~A})
$$

## 1．6．3 基尔霍夫电压定律

基尔霍夫电压定律（ KVL）又称为基尔霍夫第二定律，它描述了同一回路中各支路电压之间的约束关系。反映了电位的单值性，其表述为：在任一瞬时，从电路中任一点出发，沿任一闭合回路绕行一周，则在绕行方向（逆时针方向或顺时针方向）上，电位降之和应等于电位升之和，即电位的变化等于零。

若规定电位降取正号，电位升取负号，则基尔霍夫电压定律还可表述为：在任一瞬时，沿任一回路绕行一周，回路中各段电压的代数和恒等于零，即

$$
\begin{equation*}
\Sigma U=0 \tag{1.45}
\end{equation*}
$$

如图 1.28 所示，假定图中所标数值均为正值，若回路绕行方向为顺时针，则根据式 （ 1.45 ）有

$$
\begin{align*}
& E_{2}-E_{1}+I_{1} R_{1}+I_{2} R_{2}-I_{3} R_{3}=0 \\
& E_{1}-E_{2}=I_{1} R_{1}+I_{2} R_{2}-I_{3} R_{3} \\
& \sum E=\sum I R
\end{align*}
$$

式（1．46）为基尔霍夫电压定律在电阻电路中的另一种表达式，即在任一闭合回路的绕行方向上，回路中电动势的代数和等于电阻上电压降的代数和。此处，凡是电动势的参考方向与所选回路绕行方向一致的，电动势取正号，反之，取负号；凡是电阻上电流的参考方向与回路绕行方向一致的，该电阻的电压降取正号，反之，取负号。

基尔霍夫电压定律不仅可以应用于闭合回路，而且还可推广应用于开口回路。如图 1.29 所示电路，应用基尔霍夫电压定律有

$$
U_{\mathrm{s}}-I R-U=0
$$



图1．28 基尔霍夫电压定律


图 1.29 基尔霍夫电压定律

需要说明的是，基尔霍夫的两个定律从电路的整体上阐明了各支路电流之间和各支路电压之间的约束关系。从上述讨论可以看出，这种关系与电路的结构和连接方式有关，而与电路元件的性质无关。

注意：上述讨论是以直流电路为例进行的，实际上，基尔霍夫的两个定律具有普遍性，它们不仅适用于由各种不同元件所构成的电路，也适用于在任一瞬时有任何变化的

电流和电压。
例1．5 如图1．30所示电路，已知 $U_{\mathrm{S} 1}=23 \mathrm{~V}, U_{\mathrm{S} 2}=6 \mathrm{~V}, R_{1}=10 \Omega, R_{2}=8 \Omega, R_{3}=5 \Omega$ ， $R_{4}=R_{6}=1 \Omega, R_{5}=4 \Omega, R_{7}=20 \Omega$ ，试求电流 $I_{\mathrm{ab}}$ 及电压 $U_{\mathrm{cd}}$ 。


图 1.30 例 1.5 图
解：可将上图中虚线部分看成广义节点，由于 $\mathrm{c}, ~ \mathrm{~d}$ 两点之间断开，流出此闭合面的电流为零，故流人此闭合面的电流 $I_{a b}$ 也为零，即 $I_{a b}=0$ 。

整个电路相当于两个独立的回路，其电流分别为

$$
\begin{aligned}
& I_{1}=\frac{U_{\mathrm{S} 1}}{R_{1}+R_{2}+R_{3}}=\frac{23}{10+8+5}=1(\mathrm{~A}) \\
& I_{2}=\frac{U_{\mathrm{S} 2}}{R_{4}+R_{5}+R_{6}}=\frac{6}{1+4+1}=1(\mathrm{~A})
\end{aligned}
$$

在回路 abcd 中，应用基尔霍夫电压定律有

$$
\begin{aligned}
& I_{\mathrm{ab}} R_{7}+I_{2} R_{5}+U_{\mathrm{cd}}-I_{1} R_{2}=0 \\
& U_{\mathrm{cd}}=I_{1} R_{2}-I_{\mathrm{ab}} R_{7}-I_{2} R_{5}=1 \times 8-0-1 \times 4=4(\mathrm{~V})
\end{aligned}
$$

## 1.7 电路的分析方法

直流电路的分析方法包括支路电流法，节点电压法，叠加定理，戴维南定理，电压源和电流源的等效变换等。其中，最后一种方法已经介绍过了，本节仅介绍前四种方法。

## 1．7．1 支路电流法



电路的分析方法

电路的结构多种多样，凡不能用电阻串并联等效变换化简的电路，一般都称为复杂电路。支路电流法是分析计算复杂电路的一种最基本的方法，它是以支路电流为未知量，根据基尔霍夫电流定律和电压定律分别对节点和回路列出所需要的方程，而后联立方程，

解出支路电流的方法。以如图 1.31 所示直流电路为例来说明支路电流法的应用。在此电路中，节点数 $n=2$ ，支路数 $b=3$ ，故共需列出三个独立方程来求解三条支路上的电流。电动势和电流的参考方向如图中所示，回路绕行方向为顺时针方向。

因电路中的独立节点只有一个，故只对其中一个应用基尔霍夫电流定律即可，对节点 $a$ 有

$$
I_{1}+I_{2}-I_{3}=0
$$

又因共需三个方程才行，所以，需应用基尔霍夫电压定律列出其余两个方程，通常可取独立回路（网孔）列出。

对回路 abca 有

$$
U_{\mathrm{S} 1}=I_{1} R_{1}+I_{3} R_{3}
$$

对回路 abda 有


图 1.31 支路电流法

$$
U_{\mathrm{s} 2}=I_{2} R_{2}+I_{3} R_{3}
$$

联立以上三式，即可求出支路电流 $I_{1}, ~ I_{2}$ 和 $I_{3}$ 。
通过上述分析可知，应用支路电流法求解的步骤（假设电路中有 $n$ 个节点，$b$ 条支路）为：
（1）标定各支路电流的参考方向及回路绕行方向。
（2）应用基尔霍夫电流定律列出 $n-1$ 个节点电流方程。
（3）应用基尔霍夫电压定律列出 $b-(n-1)$ 个回路电压方程，通常选择独立回路。
（4）联立方程，求解各支路电流。
例1．6 如图1．32所示，试求电路中的 $U_{1}$ 和 $I_{2}$ 。


图 1.32 例 1.6 图
解：该电路中有 4 个节点和 6 条支路，规定 $I, ~ I_{1}, ~ I_{2}, ~ I_{3}, ~ I_{4}$ 和 $U_{1}$ 的参考方向如图
1.32 所示，独立回路的绕行方向为顺时针方向。根据基尔霍夫电流定律和电压定律可列出以下方程：

对节点 a

$$
-I_{1}-I_{2}+0.5=0
$$

对节点 b

$$
I_{1}+I-I_{3}=0
$$

对节点 c

$$
I_{2}-I-I_{4}=0
$$

对回路 1

$$
-20 I_{1}+U_{1}-20 I_{3}=0
$$

对回路 2

$$
20 I_{2}+30 I_{4}-U_{1}=0
$$

对回路 3

$$
20 I_{3}-30 I_{4}-20=0
$$

联立方程，解得

$$
\begin{array}{ll}
I=0.95 \mathrm{~A}, & I_{1}=-0.25 \mathrm{~A}, \quad I_{2}=0.75 \mathrm{~A}, \\
I_{3}=0.7 \mathrm{~A}, & I_{4}=-0.2 \mathrm{~A}, \quad U_{1}=9 \mathrm{~V}
\end{array}
$$

## 1．7．2 节点电压法

节点电压法的基本思想：用支路电流法求解电路时，所列方程数较多（有 $b$ 条支路就要列写 $b$ 个方程），为了减少方程的个数，在选取独立变量时，要另想办法，而节点电压法就可以做到这点。

节点电压法是以节点电压为未知量列写方程来分析电路的方法。在电路中，可任意选取一参考点，其余节点与参考点之间的电压便是节点电位。

以如图1．33所示电路为例来说明节点电流法的应用。在此电路中，设以节点 0 为参考点，即 $V_{0}=0$ ，节点 1 和节点 2 的电位用 $V_{1}, ~ V_{2}$ 表示。设各支路电流的参考方向如图 1.33 所示。对节点 1 和节点 2 应用 KCL 列出方程为

节点1：

$$
I_{1}+I_{2}+I_{3}+I_{4}=I_{\mathrm{S} 1}-I_{\mathrm{S} 3}
$$

节点2：

$$
-I_{3}-I_{4}+I_{5}+I_{6}=I_{\mathrm{s} 3}-I_{\mathrm{s} 2}
$$



图 1.33 节点电流法
为了将方程用节点变量 $V_{1}, ~ V_{2}$ 表示，根据欧姆定律可得

$$
I_{1}=G_{1} V_{1}, \quad I_{2}=G_{2} V_{2}
$$

$$
\begin{aligned}
& I_{3}=G_{3}\left(V_{1}-V_{2}\right), \quad I_{4}=G_{4}\left(V_{1}-V_{2}\right) \\
& I_{5}=G_{5} V_{2}, \quad I_{6}=G_{6} V_{2}
\end{aligned}
$$

整理可得

$$
\left.\begin{array}{l}
G_{11} V_{1}+G_{12} V_{2}=I_{\mathrm{S} 11}  \tag{1.48}\\
G_{21} V_{1}+G_{22} V_{2}=I_{\mathrm{S} 22}
\end{array}\right\}
$$

式中，$G_{11}$ 为节点 1 的自电导，是与节点 1 相连接的各支路电导之和，即

$$
G_{11}=G_{1}+G_{2}+G_{3}+G_{4}
$$

$G_{22}$ 为节点 2 的自电导，是与节点 2 相连接的各支路电导之和，即

$$
G_{22}=G_{3}+G_{4}+G_{5}+G_{6}
$$

$G_{12}, ~ G_{21}$ 分别为节点 1 和节点 2 之间的互电导，是连接点节点 1 和节点 2 之间的各支路电导之和的负值，即 $G_{12}=G_{21}=-\left(G_{3}+G_{4}\right)$ ，由于假设节点电位的参考方向总是由独立节点指向参考节点，所以各节点电位在自电导中所引起的电流总是流出该节点的，在节点方程左边流出节点的电流取＂+ ＂号，因而自电导总是正的，但在另一节点电位通过互电导引起的电流总是流人本节点的，在节点方程左边流入节点的电流取＂－＂号，因而互电导总是负的。
$I_{\mathrm{S} 11}$ ，$I_{\mathrm{S} 12}$ 分别表示流入节点 1 和节点 2 的电流代数和（流人为正，流出为负）。
节点电位方程是 KCL 的体现，因为方程左边是流出节点的电流，而右边是电流源送人节点的电流。

考虑一般情况，若一个电路有 $(n+1)$ 个节点，就有 $n$ 个独立节点电位，其独立节点电位分别为 $V_{1}, ~ V_{2}, ~ V_{3}, ~ \cdots, ~ V_{n}$ 根据上述原则可列出 $n$ 个独立节点电位方程，即

$$
\left.\begin{array}{c}
G_{11} V_{1}+G_{12} V_{2}+\cdots+G_{1 n} V_{n}=I_{\mathrm{S} 11}  \tag{1.49}\\
G_{21} V_{1}+G_{22} V_{2}+\cdots+G_{2 n} V_{n n}=I_{\mathrm{S} 22} \\
\vdots \\
G_{n 1} V_{1}+G_{n 2} V_{2}+\cdots+G_{n n} V_{n}=I_{\mathrm{S} n n}
\end{array}\right\}
$$

式（1．49）方程可以凭观察直接列出，其中自电导 $G_{k k}$ 为第 $k$ 个节点各个电导之和， $k=1,2,3, \cdots, n$ ，符号全为正；$G_{i j}$ 是节点 $i$ 与节点 $j$ 的互电导，$i, j=1,2,3, \cdots, n$ ，所有的互电导的符号全取负，且有 $G_{i j}=G_{j i} ; ~ I_{S k k}$ 为第 $k$ 个节点各独立节点的电流源代数和，$k=1,2,3, \cdots, n$ ，当独立电流源指向节点时，这个电流源的电流取正号，否则取负值。

需要指出的是，节点电压法不仅适用于平面电路，也适用于非平面电路，因此，节点电压法应用更普遍。

例1．7 如图1．34 所示，已知电流源 $I_{\mathrm{S} 1}=3 \mathrm{~A}, ~ I_{\mathrm{S} 2}=7 \mathrm{~A}$ 。试用节点电流法求电路中各支路电流。


图 1.34 例 1.7 图
解：
（1）选定参考节点。
参考节点可任意选定。注意，在分析电路时，一经选定，就不得随意变动。
本例取节点 0 为参考点，即 $V_{0}=0$ ，节点电位 $V_{1}$ ，$V_{2}$ 为变量。
（2）列出节点电位方程。
注意自电导总是正的，互电导总是负的。连接本节点的电流源，当其电流指向该节点时，前面取正号，反之取负号。节点电位方程为

$$
\begin{aligned}
& \left(\frac{1}{1}+\frac{1}{2}\right) V_{1}-\frac{1}{2} V_{2}=3 \\
& -\frac{1}{2} V_{1}+\left(\frac{1}{2}+\frac{1}{3}\right) V_{2}=7
\end{aligned}
$$

（3）求解联立方程得到各节点电位。联立求解上面两个方程，得

$$
V_{1}=6 \mathrm{~V} \quad V_{2}=12 \mathrm{~V}
$$

（4）求各支路电流。

$$
I_{1}=\frac{V_{1}}{1}=\frac{6}{1}=6(\mathrm{~A}), I_{2}=\frac{V_{1}-V_{2}}{2}=\frac{6-12}{2}=-3(\mathrm{~A}), \quad I_{3}=\frac{V_{2}}{3}=\frac{12}{3}=4(\mathrm{~A})
$$

（5）验算。
为了检验计算结果的正确性，需要进行验算。其方法是列写一个 KVL 方程，如果方程成立，说明计算正确。否则要重新计算。例如，本例对 3 个电阻回路列写 KVL 方程：

$$
-I_{1}+2 I_{2}+3 I_{3}=-1 \times 6+2 \times(-3)+3 \times 4=0
$$

说明上述结果是正确的

## 1．7．3 叠加定理

对无源元件，如果其参数不随其端电压或通过电流的变化而变化，则这种元件称为线性元件。由线性元件和电源所组成的电路称为线性电路。

叠加定理是线性电路普遍适用的基本定理，它反映了线性电路的基本性质，其内容为：对于线性电路，任何一条支路中的电流，都可以看成是由电路中各个电源分别作用时，在此支路上所产生的电流的代数和。

如图1．35（a）所示电路，应用叠加定理分析时，可先分解为两个分电路。以支路电流 $I_{1}$ 为例，如图 1.35 （b）所示，当 $U_{\mathrm{S} 1}$ 单独作用时，可求得分电流 $I_{1}^{\prime}$ ；如图 1.35 （c）所示，当 $U_{\mathrm{S} 2}$ 单独作用时，可求得分电流 $I_{1}^{\prime \prime}$ 。则 $I_{1}=I_{1}^{\prime}-I_{1}^{\prime \prime}$ 。


图 1.35 叠加定理
通过上述分析可知，应用叠加定理求解电路的步骤如下：
（1）把原电路分解为每个电源单独作用的分电路，标定每个电路电流和电压的参考方向。
（2）计算每个分电路中相应支路的分电流和分电压。
（3）将电流和电压的分量进行叠加，求出原电路中各支路的电流和电压。
使用叠加定理时，应注意以下几点：
（1）叠加定理只适用于线性电路，不适用于非线性电路。
（2）线性电路中的电流和电压均可用叠加定理计算。但功率不能用叠加定理来计算。例如，$P_{1}=I_{1}^{2} R_{1}=\left(I_{1}^{\prime}-I_{1}^{\prime \prime}\right)^{2} R_{1} \neq I_{1}^{\prime 2} R_{1}-I_{1}^{\prime \prime 2} R_{1}$ 。
（3）考虑每个电源单独作用时，应保持电路结构不变，并将其他电源视为零值，即电压源用短路替代，电流源用开路替代，但实际电源的内阻必须保留在原处。
（4）叠加时，应注意各分电路电流和电压的参考方向与原电路是否一致，一致时取正号，不一致时取负号。

例1．8 如图1．36（a）所示电路，已知 $U_{\mathrm{S}}=6 \mathrm{~V}, I_{\mathrm{S}}=3 \mathrm{~A}, R_{1}=2 \Omega, R_{2}=4 \Omega$ 。试用叠加定理求电路的各支路电流，并计算 $R_{2}$ 上消耗的功率。


图 1.36 例 1.8 图
解：由电路结构可知，此电路中有两个电源，可分为两个分电路进行计算，如图 1.36 （b）和图1．36（c）所示。标定各电流和电压的参考方向如图所示。

在图1．36（b）所示电路中，各支路电流为

$$
I_{1}^{\prime}=I_{2}^{\prime}=\frac{U_{\mathrm{S}}}{R_{1}+R_{2}}=\frac{6}{2+4}=1(\mathrm{~A})
$$

在图1．36（c）所示电路中，各支路电流为

$$
\begin{aligned}
& I_{3}^{\prime \prime}=3(\mathrm{~A}) \\
& I_{1}^{\prime \prime}=-\frac{R_{2}}{R_{1}+R_{2}} I_{3}^{\prime \prime}=-\frac{4}{2+4} \times 3=-2(\mathrm{~A}) \\
& I_{2}^{\prime \prime}=\frac{R_{1}}{R_{1}+R_{2}} I_{3}^{\prime \prime}=\frac{2}{2+4} \times 3=1(\mathrm{~A})
\end{aligned}
$$

根据叠加定理有

$$
\begin{aligned}
& I_{1}=I_{1}^{\prime}+I_{1}^{\prime \prime}=1-2=-1(\mathrm{~A}) \\
& I_{2}=I_{2}^{\prime}+I_{2}^{\prime \prime}=1+1=2(\mathrm{~A}) \\
& I_{3}=I_{3}^{\prime}+I_{3}^{\prime \prime}=0+3=3(\mathrm{~A})
\end{aligned}
$$

$R_{2}$ 上消耗的功率为

$$
P_{2}=I_{2}^{2} R_{2}=2^{2} \times 4=16(\mathrm{~W})
$$

## 1．7．4 戴维南定理

电路中任何一个具有两个出线端与外电路相连接的网络都称为二端网络。二端网络可分为有源二端网络和无源二端网络。其中，有源二端网络中含有电源，如图1．37（a）所示；无源二端网络中不含电源，如图 1.37 （b）所示。

（a）有源二端网络

（b）无源二端网络

图1．37 二端网络
在复杂电路的计算中，若只需计算某一支路的电流，可把这个支路画出，而把其余部分看成是一个有源二端网络。不论有源二端网络的繁简程度如何，它对所要计算的这个支路来说，都相当于一个电源。

因此，任何一个线性有源二端网络，对外电路来说，都可用一个电压源和电阻串联的电路模型来等效代替，如图 1.38 所示，该电压源的电压 $U_{\mathrm{S}}$ 等于有源二端网络的开路电压 $U_{0}$ ，电阻等于有源二端网络内部所有电源都不起作用（电压源短路，电流源开路）时，所得到的无源二端网络的等效电阻 $R_{0}$ 。这就是戴维南定理。


图 1.38 戴维南定理
应用戴维南定理求解电路的步骤如下：
（1）把待求支路从电路中断开，其余部分即形成一个有源二端网络，求其等效电路的 $U_{0}$ 和 $R_{0}$ 。
（2）用此等效电路代替原电路中的有源二端网络，求出待求支路的电流。
例 1.9 如图 1.39 所示电路，已知 $U_{\mathrm{S} 1}=140 \mathrm{~V}, U_{\mathrm{S} 2}=90 \mathrm{~V}, R_{1}=2 \Omega, R_{2}=5 \Omega, R_{3}=$ $6 \Omega$ ，试用戴维南定理求支路电流 $I_{3}$ 。


图 1.39 例 1.9 图
解：根据戴维南定理，将 $R_{3}$ 支路以外的部分用电压源和电阻串联等效代替，如 1.40 （a）所示。


图1．40 例1－8图
如图1．40（b）所示，$R_{3}$ 支路断开后，等效电路中的电流 $I$ 为

$$
I=\frac{U_{\mathrm{S} 1}-U_{\mathrm{S} 2}}{R_{1}+R_{2}}=\frac{140-90}{20+5}=2(\mathrm{~A})
$$

等效电路的开路电压 $U_{0}$ 为

$$
U_{0}=U_{\mathrm{S} 1}-I R_{1}=140-2 \times 20=100(\mathrm{~V})
$$

如图 1.40 （c）所示，等效电阻 $R_{0}$ 为

$$
R_{0}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}=\frac{20 \times 5}{20+5}=4(\Omega)
$$

于是可得支路电流 $I_{3}$ 为

$$
I_{3}=\frac{U_{0}}{R_{0}+R_{3}}=\frac{100}{4+6}=10(\mathrm{~A})
$$

## 1.8 万用表的使用

万用表是用来测量交直流电压，交直流电流，电阻，电容，二极管，三极管等的仪表。常用的万用表有数字万用表和指针式万用表。

## 1．8．1 数字万用表的使用

以胜利牌 VC890D 型号（见图1．41）为例，介绍数字万用表的面牌和基本使用。


图1．41 数字万用表 VC890D 面牌

## 1．操作面牌说明

（1）型号栏。
（2）液晶显示器：显示仪表测量的数值。
（3）背光灯，自动关机开关及数据保持键。
（4）三极管测试座：测试三极管输入口。
（5）发光二极管：通断检测时报警用。
（6）旋钮开关：用于改变测量功能，量程以及控制开关机。
（7） 20 A 电流测试插座。
（8） 200 mA 电流测试插座正端。
（9）电容＂一＂极插座及公共地。
（10）电压，电阻，二极管＂+ ＂极插座。

## 2．数字万用表的测量

（1）直流电压测量。
（1）将黑表笔插入＂COM＂插座，红表笔插入＂V／$\Omega$＂插座。
（2）将量程开关旋转至相应的直流电压量程上（ $\mathrm{V} \ldots$ ），然后将测试表笔跨接在被测电路上，红表笔所接的该点电压与极性显示在屏幕上。

## 注意：

（1）在测量前应预先估计测量电压值的大小，然后选择合适的量程。如果事先对被测电压范围没有概念，应将量程开关旋转到最高的挡位，然后根据显示值转至相应挡位上。
（2）如屏幕显示＂｜．＂（有的显示＂OL＂），表明已超过量程范围，需将量程开关转至较高挡位上。
（2）交流电压测量。
（1）将黑表笔插入＂COM＂插座，红表笔插入＂V／$\Omega$＂插座；
（2）将量程开关旋转至相应的交流电压量程上（＂V＂），然后将测试表笔跨接在被测电路上，红表笔所接的该点电压与极性显示在屏幕上。

注意事项同（1）。
（3）直流电流测量。
（1）将黑表笔插入＂COM＂插座，红表笔插入＂mA＂插座中（最大为 200 mA ），或红表笔插入＂ 20 A ＂插座中（最大为 20 A ）。
（2）将量程开关旋转至相应的直流电流量程上（＂A‥＂），然后将测试表笔串联接入被测电路上，被测电流值及红色表笔点的电流极性将同时显示在屏幕上。
（3）在测量电流时要注意，连续测量大电流将会使电路发热，影响测量精度甚至损坏仪表。
注意事项同（1）。
（4）交流电流测量。
（1）同直流电流测量中的（1）。
（2）将量程开关旋转至相应的交流电流量程上（＂A～＂），然后将测试表笔串联接入被测电路上，被测电流值及红色表笔点的电流极性将同时显示在屏幕上。

注意事项同（1）。
（5）电阻测量
（1）将黑表笔插入＂COM＂插座，红表笔插入＂V／ ＂插座中。
（2）将量程开关旋转至相应的电阻量程上（＂$\Omega$＂），然后将测试表笔跨接在被测电路上。

## 注意：

（1）如果电阻值超过所选的量程值，则会显示＂｜．＂（有的显示＂OL＂），这时应将开关转至较高挡位上；当测量电阻值超过 $1 \mathrm{M} \Omega$ 以上时，读数需几秒才能稳定，这在测量高电阻时是正常的。
（2）测量在线电阻时，要确认被测电路所有电源已关断及所有电容都已完全放电时，才可进行。
（6）二极管及通断测试。
（1）将黑表笔插入＂COM＂插座，红表笔插入＂V／${ }^{(2)}$＂插座中。
（2）将量程开关转至＂$\rightarrow+\mathrm{o})$ ）＂挡，并将红表笔连接到待测试二极管的正极，黑表笔接到二极管的负极，读数为二极管的正向压降的近似值。
（3）将表笔连接到待测线路的两点，如果两点之间的电阻值低于 $30 \Omega$ ，则内置蜂鸣器发声，表明这两点电路之间是导通的。
（7）三极管引脚判断与测量。
（1）将量程开关置于＂hFE＂挡位。
（2）判断所测晶体管为 NPN 或 PNP 型，将发射极，基极，集电极分别插入测试附件相应的插孔中，如图1．41中＂4＂所指位置。

说明：如何判断晶体管引脚请参照项目 2 。
（8）电容测量。
（1）将黑表笔插入＂COM＂插座，红表笔插入＂V $\Omega-\|-$－＂插座中，有的型号是插入到 ＂ $\mathrm{mA} "$ 插座中，测量时请仔细观察所用万用表的仪表盘。
（2）将量程开关旋转至相应的电容量程上（＂F＂），表笔对应极性（注意红表笔极性为正极）接人被测电容。

## 注意：

（1）如果事先对所测电容范围没有概念，应将量程转到最高的挡位，然后根据显示值转至相应的挡位上。
（2）在测试电容前，屏幕显示值可能尚未归零，残留读数会逐渐减小，但可以不予理会，它不会影响测量的准确度。
（3）大电容挡测量严重漏电或击穿电容时，将显示一些数值且不稳定。
（4）请在测试电容容量前，必须对电容充分放电，以防止损坏仪表。

## 1．8．2 指针式万用表的使用

以 MF500 型号为例介绍指针式万用表的使用。MF500 型指针式万用表是一只高灵敏度的磁电式直流电流表，可以测量交直流电压，直流电流和电阻等。

## 1．外观说明

表头，挡位开关和各个插孔，具体描述如图 1.42 所示。


图 1.42 指针式万用表外观说明

## 2．表头说明

表头上有四条刻度线，它们的功能如下：
刻度（1）：标有 $R$ 或 $\Omega$ ，指示的是电阻值，转换开关在欧姆挡时，即读此条刻度线。注：右端为 0 ，左端为无穷大。

读法：被测电阻 $=$ 指示值 $\times$ 欧姆挡倍数
刻度（2）：标有 $\sim$ 或 VA，指示的是交，直流电压和直流电流值，当转换开关在交，直流电压或直流电流挡，量程在除交流 10 V 以外的其他位置时，即读此条刻度线。刻度均为 50 个小刻度。

读法：测量值 $=($ 量程 $/ 50) \times$ 指针偏转的小刻度
刻度（3）：标有 10 V ，指示的是 10 V 的交流电压值，当转换开关在交，直流电压挡，量程在交流 10 V 时，即读此条刻度线。

刻度（4）：标有 dB ，指示的是音频电平。准确度较高。

## 3．指针式万用表的测量

测量前要做好以下准备工作：
（1）熟悉表盘上各符号的意义及各个旋钮和选择开关的主要作用。
（2）把万用表放置水平状态，并视其表针是否处于零点（指电流，电压刻度的零点），若不在，则应调整表头下方的＂机械零位调整＂，使指针指向零点。
（3）根据被测量的种类及大小，选择转换开关的挡位及量程，找出对应的刻度线。
（4）测量电压（或电流）时要选择好量程，量程的选择应尽量使指针偏转到满刻度

的 $2 / 3$ 左右。如果事先不清楚被测电压的大小时，应先选择最高量程挡，然后逐渐减小到合适的量程。

然后根据需要进行相关的测量：
（1）交流电压的测量：将万用表的挡位量程转换开关 2 置于交，直流电压挡，挡位量程转换开关 1 置于交流电压（＂${ }_{\sim}^{\mathrm{V}} "$ ） $10 \sim 500 \mathrm{~V}$ 之间合适量程上。万用表的红表笔插人 ＂+ ＂插孔，黑表笔接人＂＊＂插孔，表笔和被测电路或负载并联即可。
（2）直流电压的测量：将万用表的挡位量程转换开关 2 置于交，直流电压挡，挡位量程转换开关 1 置于直流电压（＂$\underline{\mathrm{V}}$＂） $25 \sim 500 \mathrm{~V}$ 之间合适量程上，且＂＋＂表笔（红表笔）接到高电位处，＂－＂表笔（黑表笔）接到低电位处。若表笔接反，表头指针会反方向偏转，容易撞弯指针。

注意事项：在测量时，进行机械调零，测电压过程中，挡位不能随意更换，并且也不能带电更换量程，否则会使万用表读数误差较大或严重的损坏。
（3）直流电流测量：测量直流电流时，将万用表的挡位量程转换开关 2 置于直流电流挡（＂A＂），挡位量程转换开关 1 置于 $50 \mu \mathrm{~A} \sim 500 \mathrm{~mA}$ 间合适量程上，电流的量程选择和读数方法与电压一样。测量时必须先断开电路，然后按照电流从＂＋＂到＂－＂的方向，将万用表串联到被测电路中，即电流从红表笔流入，从黑表笔流出。如果误将万用表与负载并联，则因表头的内阻很小，会造成短路烧毁仪表。其读数方法如下：

实际值 $=$ 指示值 $\times$ 量程 $/$ 满偏
（4）电阻测量：用万用表测量电阻时，应按下列方法操作：
（1）利用机械调零旋钮进行机械调零，使指针右偏为零。
（2）选择合适的倍率挡。万用表欧姆挡的刻度线是不均匀的，所以倍率挡的选择应使指针停留在刻度线较稀的部分为宜，且指针越接近刻度尺的中间，读数越准确。一般情况下，应使指针指在刻度尺的 $1 / 3 \sim 2 / 3$ 间。
（3）欧姆调零。将挡位量程转换开关 1 拨至欧姆挡（＂$\Omega$＂），挡位量程开关 2 拨至欧姆挡相应的倍率，然后将红黑表笔短接，调节欧姆挡调零旋钮，使指针右偏至零。
（4）读数：表头的读数乘以倍率，就是所测电阻的电阻值。
注意事项：
（1）注意在欧姆表改换量程时，需要进行欧姆调零，无须机械调零。
（2）测电阻时，不能带电测量。因为测量电阻时，万用表由内部电池供电，如果带电测量则相当于接人一个额外的电源，可能损坏表头。
（3）用毕，应使转换开关在交流电压最大挡位或空挡上。
（4）选择量程时，要先选大的，后选小的，尽量使被测值接近于量程。

## 习 题

## 一，填空题

1．电路是电流的通路，它是由 $\qquad$ ， $\qquad$和 $\qquad$三部分按一定方式组合而成

的。电路的主要作用包括 $\qquad$和 $\qquad$ －
2．习惯上规定电流的实际方向为 $\qquad$ ，它是客观存在的。而为了方便分析和计算，可以任意选定一个方向作为 $\qquad$ ，若电流的实际方向与其一致，则电流 $\qquad$ ；若电流的实际方向与其相反，则电流为 $\qquad$ —。

3．电动势的实际方向为由 $\qquad$端指向 $\qquad$端，因此，电动势和 $\qquad$的实际方向相反。

4．电气设备在额定值情况下的工作状态称为 $\qquad$ ，又称为 $\qquad$。电气设备超过额定值的工作状态称为 $\qquad$。电气设备低于额定值的工作状态称为 $\qquad$。
$\qquad$和 $\qquad$都是应该避免的。

5．串联电路的特点是通过每个电阻的 $\qquad$等于各串联都相同，总电阻的 $\qquad$之和；并联电路的特点是每个电阻两端的都相等，总 $\qquad$等于流过各个并联电阻的
$\qquad$之和。

6．由电动势 $E$ 和内阻 $R_{0}$ 串联组成的电源电路模型称为 $\qquad$ ；由电流 $I_{\mathrm{S}}$ 和内阻 $R_{0}$并联组成的电源电路模型称为 $\qquad$ －

7．基尔霍夫电流定律应用于 $\qquad$ ；基尔霍夫电压定律应用于 $\qquad$。
8．叠加定理只适用于 $\qquad$ ，不适用于 $\qquad$。线性电路中的电流和电压均可用叠加定理计算，但 $\qquad$不能用叠加定理来计算。

## 二，解答题

1．如图 1.43 所示，请说明通过电阻的电流的实际方向。


图 1.43 题 1 图
2．如图 1.44 所示，请说明通过电阻两端电压的实际方向。


图 1.44 题 2 图
3．如图 1.45 所示电路中， O 为零电位点，已知，$V_{\mathrm{A}}=50 \mathrm{~V}, V_{\mathrm{B}}=-40 \mathrm{~V}, V_{\mathrm{C}}=30 \mathrm{~V}$ 。
（1）求 $V_{\mathrm{BA}}$ 和 $V_{\mathrm{AC}}$ ；（2）如果元件 4 为具有电动势 $E$ 的电源，在所标参考方向下求 $E$的值。

4．如图 1.46 所示电路，三个元件中流过相同的电流 $I=-2 \mathrm{~A}, U_{1}=-2 \mathrm{~V}$ 。（1）求元件 a 的功率 $P_{1}$ ，并说明它是吸收功率还是发出功率；（2）若已知元件 b 发出功率 10 W ，元件 c 吸收功率 12 W ，求 $U_{2}$ 和 $U_{3}$ 。


图1．45 题3图


图1．46 题4图

5．如图 1.47 所示电路中，$U=220 \mathrm{~V}, I=5 \mathrm{~A}$ ，内阻 $R_{01}=R_{02}=0.6 \Omega$ 。（1）试求电源的电动势 $E_{1}$ 和负载的反电动势 $E_{2}$ ；（2）试说明功率的平衡。


图 1.47 题 5 图
6．试用电压源和电流源等效变换的方法计算如图 1.48 所示电路中 $6 \Omega$ 电阻上的电流 $I_{3}$ 。


图 1.48 题 6 图
7．求图 1.49 所示电路中的电流 $I$ 。
8．如图 1.50 所示电路中，已知 $U_{\mathrm{S} 1}=10 \mathrm{~V}, U_{\mathrm{S} 2}=5 \mathrm{~V}, R_{1}=R_{3}=1 \Omega, R_{2}=R_{4}=2 \Omega$ ，试用支路电流法求各支路电流。


图 1.49 题 7 图


图1．50 题8 图

9．如图 1.51 所示桥式电路中，设 $E=12 \mathrm{~V}, R_{1}=R_{2}=5 \Omega, R_{3}=10 \Omega, R_{4}=5 \Omega$ 。中间支路是一检流计，其电阻 $R_{\mathrm{G}}=10 \Omega$ 。试求检流计中的电流 $I_{\mathrm{G}}$ 。

10．如图 1.52 所示电路，试用叠加定理求电路中的电流 $I_{\mathrm{L}}$ 。


图 1.51 题 9 图


图 1.52 题 10 图

11．用戴维南定理计算第 9 题中的电流 $I_{\mathrm{G}}$ 。
12．如图 1.53 所示，用戴维南定理求电路中的电流 $I_{\circ}$ 如果电阻 $R$ 可变，求 $R$ 为何值时，电阻 $R$ 从电路中吸收的功率最大？该最大功率为多少？


图 1.53 题 12 图

