工 程 地 质

（第2版）

主 编 赖天文
副主编 梁庆国 刘德仁

西南交通大学出版社
－成 都•

内容简介

全书除绪论外共 8 章，包括矿物与岩石，地质构造，土的工程性质，水的地质作用，地貌，物理地质灾害，几类工程中的工程地质问题，工程地质勘察等内容。全书文字简明，循序渐进，内容丰富，重点突出，有大量的实例图片，便于自学。

本书可作为土木工程类（工民建，城建，道桥，地下工程），水利水电工程和测绘工程等专业的教材，也可供广大土木工程技术人员参考，亦可作为同专业的成人教育教材和参考书。

图书在版编目（C I P）数据

工程地质／赖天文主编．－ 2 版．—成都：西南交通大学出版社， 2022.2

ISBN 978－7－5643－8568－2
I ．（1）工… II．（1）赖… III．（1）工程地质－高等学校－教材 IV．（1）P642

中国版本图书馆 CIP 数据核字（2022）第004510号

Gongcheng Dizhi

工 程 地 质

（第2版）
主编 赖天文
责任编辑 韩洪黎
封面设计 曹天擎

出版发行 西南交通大学出版社
（四川省成都市金牛区二环路北一段 111 号
西南交通大学创新大厦 21 楼）
邮政编码 610031
发行部电话 028－87600564 028－87600533
网址 http：／／www．xnjdcbs．com
印刷 四川森林印务有限责任公司

成品尺寸	$185 \mathrm{~mm} \times 260 \mathrm{~mm}$
印张	16
字数	419 千
版次	2011 年 11 月第 1 版
	2022 年 2 月第 2 版
印次	2022 年 2 月第 4 次
定价	39.50 元
书号	ISBN $978-7-5643-8568-2$

课件咨询电话：028－81435775
图书如有印装质量问题 本社负责退换
版权所有 盗版必究 举报电话：028－87600562

第2版前言

工程地质不仅是土木工程专业一门重要的技术基础课程，同时又是一门实践性很强的学科，在土木工程专业的人才培养中起着很重要的作用。

本书自 2011 年 11 月第 1 版发行以来，受到了开办土木工程专业院校的欢迎，为土木工程专业，水利水电专业，测绘工程专业学生开出了专业人门的重要一课。

2018年1月，教育部高等学校教学指导委员会公布《普通高等学校本科专业类教学质量国家标准》，该标准是向全国，全世界发布的第一个高等教育教学质量国家标准，该标准涵盖了普通高校本科专业目录中全部 92 个本科专业类， 587 个专业，涉及全国高校 56000 多个专业点，对各专业的教学和人才培养提出了新的要求。

近 10 年来，关于工程地质方面，国家和行业发布了许多新的规范，规程和标准。其中，铁路行业发布了《铁路工程地质勘察规范》（TB 10012－2019），《铁路工程水文地质勘察规范》 （TB 10049－2014），《铁路工程地质遥感技术规程》（TB 10041－2018），《铁路工程地质原位测试规程》（TB 10018－2018），《铁路工程岩土分类标准》（TB 10077－2019）。

本书第 2 版与时倶进，根据新规范，新规程，新标准做了相应修订，补充更新了部分内容，调整了章节顺序。全书除绪论外共分为 8 章，第 1 章为矿物与岩石，第 2 章为地质构造，第 3章为土的工程性质，第4章为水的地质作用，第5章为地貌，第6章为物理地质灾害，第7章为几类工程中的工程地质问题，第 8 章为工程地质勘察。

本书由兰州交通大学赖天文任主编，梁庆国，刘德仁任副主编。具体编写分工为：赖天文编写第4章，第5章，第7章，第8章；梁庆国编写绪论，第1章，第6章；刘德仁编写第2章，第3章。全书最后由赖天文统稿。由于编者水平有限，书中不足之处在所难免，敬请读者批评指正。

编 者

2021年11月

第1版前言

工程地质不仅是土木工程专业一门重要的技术基础课，同时又是一门实践性很强的学科，在土木工程专业的人才培养中起着很重要的作用。

1998年7月教育部颁布了新的普通高等学校专业目录，根据该目录，现行的土木一级学科涵盖了原建筑工程，道桥，市政，铁路，地下建筑，港口，矿井，隧道等多个专业，原相关专业的工程地质教材经历这次学科合并之后普遍存在着专业局限性强，知识面过窄等问题，难以适应新学科发展的需要。

为满足 21 世纪国家建设对专业人才的需求，适应专业面扩大后的土木工程专业的教学需要，根据有关专业教学大纲，在原公路工程，桥梁与隧道工程，建筑工程等专业所使用的工程地质教材的基础上，针对前土木工程专业所涉及的工程地质理论和知识，同时兼顾水利水电专业，测绘专业对工程地质知识的要求，编写了这本教材。

全书除绪论外共 8 章，第 1 章为矿物与岩石，第 2 章为地质构造，第 3 章为土的工程性质，第4章为地下水，第5章为地貌，第6章为常见地质灾害，第7章为几类工程中的工程地质问题，第 8 章为工程地质勘察。

本书由兰州交通大学赖天文任主编，梁庆国，刘德仁任副主编。赖天文编写第4章，第5章，第7章，第8章；梁庆国编写绪论，第1章，第6章；刘德仁编写第2章，第3章。全书最后由赖天文统稿。

本书文字简明，循序渐进，内容丰富，重点突出，图文并茂，便于自学。本书可作为土木工程类（工民建，城建，道桥，地下工程），水利水电工程和测绘工程等专业的教材，也可供广大土木工程技术人员参考，亦可作为同专业的成人教育教材和参考书。

本书在编写过程中，得到兰州交通大学土木工程学院岩土与地下工程系的众多老师的帮助，在此表示感谢。对于书中所引用文献和研究成果的众多作者也表示诚挚的谢意。

由于编者水平所限，书中不当之处在所难免，敬请读者批评指正。

编 者

2011年5月

目 录

0 绪 论 1
0.1 地质学与工程地质学 1
0.2 工程地质学的研究对象，任务和方法 ． 1
0.3 工程地质学的主要内容及学习要求 5
1 矿物与岩石 ． 7
1.1 地球的基本知识与地质作用 ． 7
1.2 主要造岩矿物 11
1.3 岩石的地质成因与特性 17
1.4 岩石的工程性质 40
2 地质构造 49
2.1 地壳运动 49
2.2 地质年代 52
2.3 岩 层 58
2.4 褶皱构造 63
2.5 断裂构造 68
2.6 地质图 79
3 土的工程性质 87
3.1 土的形成 87
3.2 土的工程性质 89
3.3 土的工程分类 96
3.4 特殊土的工程地质性质 98
4 水的地质作用 115
4.1 地表流水的地质作用 116
4.2 地下水的地质作用 121
5 地 貌 139
5.1 概 述 139
5.2 山岭地貌 142
5.3 平原地貌 147
5.4 河谷地貌 148
5.5 黄土地貌 152
6 物理地质灾害 156
6.1 滑 坡 158
6.2 崩 塌 167
6.3 泥石流 172
6.4 岩 溶 178
6.5 地 震 184
7 几类工程中的工程地质问题 192
7.1 道路工程中的工程地质问题 192
7.2 地下工程中的工程地质问题 200
7.3 桥梁工程中的工程地质问题 ． 204
7.4 水利水电工程中的工程地质问题 208
8 工程地质勘察 220
8.1 概 述 220
8.2 工程地质测绘 222
8.3 工程地质勘探 224
8.4 岩土测试 230
8.5 工程地质勘察资料整理 235
附 录 237
附录1 主要造岩矿物及其鉴定特征 237
附录2 地震烈度表 243
参考文献 246

0 绪 论

教学重点：工程地质学的主要任务和研究内容；工程地质条件。
教学难点：工程建筑与地质环境之间的相互作用；工程地质问题分析。

地质学是研究地球的一门自然科学，它主要研究的是固体地球的组成，构造，形成和演化规律等，是地学的重要组成部分。工程地质学又是地质学的一个分支，它是研究与工程建设有关的地质学部分，是从生产实践中发展起来，研究工程建筑物的勘测设计，施工和使用过程中有关地质问题的科学。

0.1 地质学与工程地质学

地质学的研究对象主要是固体地球的上层，即岩石圈部分，包括地壳和上地幔的上部。研究内容主要有以下几个方面：（1）研究组成地球的物质。由矿物学，岩石学，地球化学等分支学科承担这方面的研究。（2）阐明地壳及地球的构造特征，即研究岩石或岩石组合的空间分布。这方面的分支学科有构造地质学，区域地质学，地球物理学等。（3）研究地球的历史以及栖居在地质时期的生物及其演变。研究这方面问题的分支学科有古生物学，地史学，岩相古地理学等。（4）地质学的研究方法与手段。如同位素地质学，数学地质学及遥感地质学等。（5）研究应用地质学。以解决资源探寻，环境地质分析和工程防灾问题。从应用方面来说，主要有两方面：一是以地质学理论和方法指导人们寻找各种矿产资源，承担这方面研究的分支学科有矿床学，煤田地质学，石油地质学，铀矿地质学等；二是运用地质学理论和方法研究地质环境，查明地质灾害的规律和防治对策，以确保工程建设安全，经济和正常运行。后者就是工程地质学研究的主要内容。

工程地质学是地质学的一个分支，是研究与工程建设有关的地质问题的科学。工程地质学是工程科学与地质科学相互渗透，交叉而形成的一门边缘学科，主要从事人类活动与地质环境相互关系的研究，是服务于工程建设的科学。工程地质学的服务对象是人为设计，人为施工的建（构）筑物，这也决定了它具有综合性，边缘线和交叉性的特性，在很大程度上体现了工程地质学的应用性，具有工程技术科学的属性。因此，广义地讲，工程地质学是研究地质环境及其保护和利用的科学；狭义地讲，则是将地质学的原理运用于解决与工程建设有关的地质问题的一门应用性很强的学科。

0.2 工程地质学的研究对象，任务和方法

工程地质学作为地质学的一门相对年轻的独立分支学科，已存在 $70 \sim 80$ 年之久，但只是在第二次世界大战后才逐渐形成比较完善的学科体系。在中国也仅有 50 多年的历史。工程地

质学具有鲜明的自然科学属性，同其他基础地质学各分支学科有着较大的差异。

0．2．1 工程地质学的研究对象

人类工程活动与地质环境间的相互关系，首先表现为地质环境对工程活动的制约作用。地球上现有的工程建筑物，都建造于地壳表层一定的地质环境中。地质环境包括地壳表层及深部的地质条件，它们以一定的作用方式影响着工程建筑物。例如，地球内部构造活动导致的强烈地震，顷刻间可以使较大地域范围内的各种建筑物和人民生命财产遭受毁灭性的损失；地壳表面的软弱土体不适应某些工业与民用建筑荷载的要求，会导致如房屋，桥梁等工程结构物的变形，开裂甚至倒塌，需进行专门的地基处理；地质时期形成的岩溶洞穴因严重渗漏，造成水库和水电站不能正常发挥效益，甚至完全丧失功能；大规模的滑坡，崩塌，因难于治理而使铁路，公路改线等等。地质环境对人类工程活动的各种制约作用，归结起来是从安全，经济和正常使用三个方面影响工程建筑物的。

人类的各种工程活动，又会反馈作用于地质环境，使自然地质条件发生变化，影响建筑物的稳定和正常使用，甚至威胁到人类的生活和生存环境。工程建筑对地质环境的作用，是通过应力变化和地下水动力特征的变化等表现出来的。如建筑物自身重量对地基土体施加的荷载，滨海城市大量抽汲地下水所引起的地面沉降变形，坝体所受库水的水平推力，开挖边坡和基坑造成的卸荷效应，地下洞室开挖对围岩应力的影响，地震和降雨对自然边坡和滑坡的扰动，路基和堤坝填筑作用于地基的附加应力，都会引起岩土体内的应力状况发生变化，造成岩土体变形甚至破坏。还有建筑物的施工和建成会经常引起地下水的变化给工程和环境带来危害，诸如岩土的软化泥化，地基砂土液化，道路冻害，水库浸没，坝基渗透变形，隧道涌水，矿区地面塌陷等。由此，可将人类工程活动（勘测设计，施工和运营维修等）对自然环境的影响概况划分为五种类型：工程荷载，爆破及工程振动，岩土体开挖卸荷，岩土回填和废弃物堆积，还有流体和流域的调节。人类不合理的工程活动不仅会直接地破坏地质环境，而且影响到工程建（构）筑物自身的安全和稳定，造成工程事故。图 0.1 是对上述相互作用的归纳总结。

由此可见，人类的工程活动与地质环境之间处于相互作用，相互制约的矛盾之中。研究地质环境与工程建（构）筑物之间的关系，促使两者之间的矛盾缓和，解决，就是工程地质学的研究对象。

0．2．2 工程地质条件

在工程地质学中，用工程地质条件来综合描述对人类工程活动有影响的地质环境。工程地质条件可定义为：与工程建筑物有关的地质要素之综合，包括：（1）岩土类型及其工程地质性质：是最基本的工程地质因素，包括它们的成因，时代，岩性，产状，成岩作用特点，变质程度，风化特征，软弱夹层和接触带以及物理力学性质等。（2）地质构造：是工程地质工作研究的基本对象，包括褶皱，断层，节理构造的分布和特征。地质构造，特别是形成时代新，规模大的优势断裂，对地震等灾害具有控制作用，因而对建筑物的安全稳定，沉降变形等具有重要意义。 （3）水文地质条件：是重要的工程地质因素，包括地下水的成因，埋藏，分布，动态和化学成分等。（4）物理地质现象：是指对建筑物有影响的自然地质作用与现象，主要包括滑坡，崩塌，岩溶，泥石流，地震等，对评价建筑物的稳定性和预测工程地质条件的变化意义重大。（5）地形地貌条件：地形是指地表高低起伏状况，山坡陡缓程度与沟谷宽窄及形态特征等；地貌则说明地

图 0.1 人类工程活动与地质环境的相互作用
形形成的原因，过程和时代。不同的地貌形态特征，对建筑场地和线路的选择都有重要影响。 （6）天然建筑材料：是指供建筑用的土料和石料，如修筑土坝，路堤需要用大量土料，修建海堤，石桥，堆石坝需要大量石料，拌和混凝土需要砂，砾石等作为骨料等。从节约运输费用角度，应遵循＂就地取材＂的原则，用料量大的工程尤其应该如此。工程建设中所需有关建筑材料的分布，类型，品质，开采条件，储量及运输条件等，也是工程地质条件中的一个重要因素。

需要强调的是：工程地质条件是一个综合概念，是上述六个要素的总体，而不是指任何单一要素，单独一两个要素不能称之为工程地质条件。工程地质条件的优劣也在于其中各个要素是否对工程有利，实际工程中要从整体着手，结合建筑物的特点进行综合分析论证。

工程地质条件是长期的自然地质历史的产物，反映了某地区地质发展过程及后生的变化。在不同地区，不同工程类型，不同设计阶段解决不同问题时，上述各方面的重要性并不是等同的，而是有主有次。其中，岩土的类型及工程地质性质和地质构造往往起主导作用，但在某些情况下，地形地貌或水文地质条件也可能是首要因素。工程地质条件所包括的各方面因素是相互联系，相互制约的。因此，在解决工程建设中的地质问题时，应该对各方面因素综合分析论证。

0．2．3 工程地质问题

人类工程建筑和自然地质作用会改变地质环境，影响工程地质条件的变化，反之，工程地质条件的变化对工程建筑也会产生影响。人类工程活动和工程地质条件是相互作用，相互制约的关系。我们把工程建筑与工程地质条件（地质环境）相互作用，相互制约而引起的，对建筑本身的顺利施工和安全运行或对周围环境可能产生影响的地质问题，称之为工程地质问题。工程地质问题与工程建筑的类型和规模有着密切的关系。各类工程建筑，由于其结构类型和工作方式不同，面临着各种各样的工程地质问题。工业与民用建筑常遇到的工程地质问题是地基的

变形，强度和稳定等问题；路基工程中常遇见的工程地质问题是软弱地基，边坡稳定性，路基冻胀等问题；地下工程与隧道工程常遇到的工程地质问题是围岩稳定，涌水，突泥，高地应力，岩爆，高地热和有害气体等问题；水利电力工程的工程地质问题则更为复杂多样，除有区域地壳稳定，坝基，边坡和地下洞室岩土体的稳定问题外，还有库坝区渗漏，水库淤积，滨库地区浸没，水库诱发地震等问题；在特殊土地区同样会遇到一些特殊的工程地质问题，如黄土的湿陷性，软土的高压缩低渗透性，膨胀土的胀缩性和强度衰减性，冻土的冻融性等。另外，还有环境工程地质问题，如大量抽取地下水，石油及天然气而造成大范围的地面沉降，采矿产生的废矿渣的不当处理及环境污染等。

分析工程地质问题就是分析工程建筑与工程地质条件之间的相互制约，相互作用的机制与过程，影响因素，边界条件，做出定性评价；并在此基础上进一步进行科学合理的计算，试验，测试等，做出定量评价，明确作用的强度或工程地质问题的严重程度与发生发展的进程，这也就是工程地质预测，预测施工过程中和建成后对工程建筑本身和生态环境会产生何种影响；继而做出评价和结论，提供设计施工参考，共同制定防治措施方案，以保证工程建筑的安全和消除对周围环境的危害。由此可知，工程地质评价和工程地质结论与处理措施方案都要通过工程地质问题分析才能得出。因此，工程地质问题分析是工程地质工作的中心环节，需要＂吃透两头＂：一头是＂工程意图＂，即工程设计人员对建筑结构和规模的构思，以了解工程需求；另一头是＂工程地质条件＂，深刻认识客观情况，分析哪些是有利的，哪些是不利的，为采取相应的勘察，设计和施工方案提供建议。

0．2．4 工程地质学的任务

工程地质学的任务就是为工程建设进行地质研究，提供工程规划，设计，施工所需的地质资料，解决工程上所遇到的各种地质问题，以保证建筑物的安全可靠，经济合理，运行正常，并尽可能减少对地质环境的危害。

工程地质研究的基本任务，可归结为三方面：（1）区域稳定性研究与评价：是指由内力地质作用引起的断裂活动，地震对工程建设地区稳定性的影响；（2）地基稳定性研究与评价：是指地基的牢固，坚实性；（3）环境影响评价：是指人类工程活动对环境造成的影响。

工程地质学的具体任务是通过工程地质勘察完成的，主要包括：（1）评价工程建设地区的工程地质条件，阐明工程建筑兴建和运行的有利和不利因素，选定建筑场地和适宜的建筑形式，保证规划，设计，施工，使用，维修顺利进行；（2）从地质条件与工程建筑相互作用的角度出发，预测和分析工程建设过程中及完成后工程地质条件可能产生的变化，即可能出现的工程地质问题及其发生的规模和发展趋势；（3）选择最佳工程场地，提出及建议改善，防治或利用有关工程地质条件的措施，加固岩土体和防治地下水的方案；（4）研究岩体，土体分类和分区及区域性特点；（5）研究人类工程活动与地质环境之间的相互作用与影响，进行环境质量评价。（6）改造地质环境，进行工程地质处理，提高岩土体稳定性，保护环境质量。

0．2．5 工程地质学的研究方法

工程地质学的研究对象是复杂的地质体，所以其研究方法应是地质分析法与力学分析法，工程类比法与实验法等的密切结合与综合运用，即通常所说的定性分析与定量分析相结合的综合研究方法。要查明建筑区工程地质条件的形成和发展，以及它在工程建筑物作用下的发展变

化，首先必须以地质学和自然历史的观点分析研究周围其他自然因素和条件，了解在历史过程中对它的影响和制约程度，这样才有可能认识它形成的原因和预测其发展趋势和变化，这就是地质分析法。地质分析法是工程地质学的基本研究方法，也是进一步定量分析评价的基础。从工程建筑物的设计和运用的要求来说光有定性的论证是不够的，还要求对一些工程地质问题进行定量预测和评价。在阐明主要工程地质问题形成机制的基础上，建立模型进行计算和预测，例如地基稳定性分析，地面沉降量计算，地震液化可能性计算等。当地质条件十分复杂时，还可根据条件类似地区已有资料对研究区的问题进行定量预测，这就是采用类比法进行评价。采用定量分析方法论证地质问题时都需要采用试验测试方法，即通过室内或野外现场试验，取得所需要的岩土的物理性质，水理性质，力学性质数据。通过长期观测来了解地质现象的发展速度也是常用的试验方法。综合应用上述定性分析和定量分析方法，才能取得可靠的结论，对可能发生的工程地质问题制定出合理的防治对策。

要完成工程地质学的具体任务，必须进行详细的工程地质勘察工作，以取得有关建筑场地的工程地质条件的基本资料，并进行工程地质论证。

0.3 工程地质学的主要内容及学习要求

本书着重介绍土木工程专业所涉及的工程地质学基本理论和基本知识，其主要内容包括：矿物与岩石，地质构造，土的工程性质，水的地质作用，地貌，常见地质灾害，工程中常见的地质问题，工程地质勘察等。不同的专业方向可根据需要选择有关章节学习。

工程地质学是土木工程，水利水电工程以及测绘工程等专业的一门专业基础课。课程特点是内容广，概念多，实践性强。学习中要注意弄清概念，掌握分析方法，避免死记硬背，理论联系实际，重在工程运用。尤其要加强地质科学中将今论古，类比分析，综合判断等学科思想和方法论的思考领会，注重对教学内容之间结构性和关联性的比较分析，如对比三种岩石与三种地下水，四种特殊土，三种地质构造，四种常见沉积物和地质灾害等内容之间的异同与相应的研究思路及工程措施等，力争能够做到独立思考，摸索学习方法和规律，不仅要更好地掌握教学内容，还要着力在学术思想，研究方法，学习能力，专业素养的培育和创新能力等方面有所提升，以提高对课程内容的兴趣和学习的主动性。

为了学好这门课程，应结合课堂教学认真完成有关矿物，岩石的实验课程，掌握常见矿物和岩石的肉眼鉴定方法；结合已有的地质图或工程案例进行具体分析，培养学生阅读地质图和分析工程地质条件的能力；安排短期的野外地质实习，以帮助学生了解岩土类别的野外鉴别方法，地质构造，地貌及常见地质灾害的野外识别，提高学生分析工程地质条件，处理工程地质问题的实践能力。积极采用多种教学方法，如标本，模型，图片等，配合有关地质科教片，幻灯片，视频等直观教学手段，增加学生的感性认识，帮助学生尽快建立起地质学的有关概念，提高学生对工程地质学的重视程度和学习兴趣。

作为一名本科生，在学习本课程后，应达到以下基本要求：
（1）能阅读一般地质资料，根据地质资料在野外能辨认常见的岩石和土，了解其主要的工程性质；
（2）能辨认基本的地质构造及明显的不良地质现象，了解其对工程建筑的影响；
（3）重点掌握工程地质的基本理论和方法，根据工程地质勘察资料，在土木工程设计，施工和运营中能对一般的工程地质问题进行综合分析；
（4）了解取得工程地质资料的工作方法，手段及成果要求，能把学到的工程地质学知识和专业知识紧密结合起来，应用于实际的工程设计与施工。

思 考 题

1．工程地质学的定义是什么？
2．工程地质学的研究对象是什么？
3．什么是工程地质条件，有哪些要素？
4．工程地质学的任务是什么？怎样实现工程地质学的任务？

1 矿物与岩石

教学重点：矿物的形态，性质；三大岩石的形成过程与地质特性；岩石风化作用。
教学难点：地质作用；矿物与岩石的鉴定；岩石风化作用分级。

1.1 地球的基本知识与地质作用

地球是我们人类共同的家园。我们所从事的一切生产活动无不发生于地球；我们赖以生存，发展的各种资源和能源，也绝大部分取自于地球；我们所有的工程建筑也都修筑于地球的浅表层。例如，世界上最深的矿山——南非兰德矿山，深度为 3600 m ；世界上最深的钻井——俄罗斯科拉半岛超深钻井也只有 13000 m 。然而，人类对固体地球，特别是地球表层的认识和所能达到的深度是极其有限的，但对于我们的生存和生产生活却是至关重要的。因此，了解地球的基本物质组成，结构及性质具有十分重要的意义。

1．1．1 地球的形状和大小

地球是宇宙中绕着太阳旋转的椭圆形球体，根据卫星轨道分析发现，地球并不是标准的旋转椭球体，其外形呈梨形（图1．1），赤道半径约 6370 km ，两极半径为 6357 km 。北极突出约 10 km ，南极凹进约 30 km ，中纬度在北半球凹进，在南半球凸出。地球表面形态是高低不平的，而且差距较大，大致可以划分为大陆和海洋两部分，海洋占地球表面的 70.8% 。大陆平均高出海平面 0.86 km ，海底平均低于海平面 3.8 km 。其他有关地球的基本参数如表1．1。

表1．1 地球基本参数

参数项目	数值	单位	参数项目	数值	单位
地球平均半径	6371	km	地球的平均密度	5.517	$\mathrm{~g} / \mathrm{cm}^{3}$
赤道周长	40075.24	km	大陆最高山峰（珠穆朗玛峰）	8848.86	m
子午线周长	40008.08	km	大陆平均高度	825	m
地球面积	51000×10^{4}	$\mathrm{~km}^{2}$	海洋最深海沟（马里亚纳海沟）	-11034	m
地球的体积	10830×10^{8}	$\mathrm{~km}^{3}$	海洋平均深度	3800	m
地球的质量	5.976×10^{27}	g	大陆和海洋的平均高度 ${ }^{*}$	-2488	m

注：＊即全球表面无起伏，将被 2448 m 厚的海水所覆盖。

1．1．2 地球的圈层结构

地球是一个由不同状态与不同物质的同心圈层所组成的球体，各圈层之间具有明显的物理化学性质和物质运动状态的差异。这些圈层可分成内部圈层与外部圈层，即内三圈与外三圈。

其中外三圈包括大气，水圈和生物圈，内三圈包括地壳，地幔和地核。地球各圈层的质量及其所占地球总质量的比例见表1．2。

表 1.2 地球各圈层质量及其占地球总质量的比例

圈层名称	质量／t	占地球总质量的比例 1%	圈层名称	质量／t	占地球总质量的比例 $/ \%$
大气圈	5×10^{15}	0.00009	地壳	5×10^{19}	0.8
水圈	1.41×10^{18}	0.024	地慢	4.05×10^{21}	67.8
生物圈	大气圈质量的 $1 / 300$	-	地核	1.88×10^{21}	31.5

1．1．2．1 地球的内部圈层

地球并不是均匀的球体，地球物理学家研究大量地震波传播速度和方向的数据后发现，地球内部有两个波速变化最明显的界面（莫霍面与古登堡面）反映了该深度上下的地球物质在成分或形态上有明显改变。根据这两个界面把地球由地表向内依次划分为三个同心圆状的圈层，即地壳，地幔和地核，如图 1.2 所示。地球内部各圈层的物质运动及不同圈层之间的相互作用，是产生各种地质现象的内动力的源泉。

图 1.1 地球的形状

图1．2 地球的圈层结构

地壳 地壳是固体地球最外面的一层硬壳，由硅酸盐类固体岩石组成，下界是莫霍面。地壳的厚度变化很大，大陆地壳平均厚度约 37 km ，其中高山，高原区地壳厚度大，如青藏高原地壳最厚可达 70 km 以上，而海洋平均厚度仅 7 km 多。地壳的主要成分是硅铝层（花岗岩层）和硅镁层（玄武岩层）。

地幔 地幔是莫霍面以下介于地売和地核之间的过渡层，厚度 2900 km 以上，占地球体积的 83% 。一般以 1000 km 为界，把地幔分为上地幔和下地幔。其中，上地幔的地震波数值和在橄榄岩中实验所得的数值相似，所以也称橄榄岩层，又称榴辉岩层，呈熔融状态，可能是岩浆的发源地；下地幔由中等密度（密度一般在 $5 \mathrm{~g} / \mathrm{cm}^{3}$ 以上）的铁，镁的硅酸盐组成，化学成分目前认为仍然相当于镁铁的硅酸盐矿物，与上地幔没有太大的差别。

地核 地核以古登堡面与地幔分界，厚度 3471 km ，体积占地球的 16.2% 。主要由占比较大的铁，镍组成，又称铁镍核心。据推测，地核物质非常致密，密度为 $9.7 \sim 13 \mathrm{~g} / \mathrm{cm}^{3}$ ，压力可达（ $3.0 \sim 3.6) \times 10^{11} \mathrm{~Pa}$ ；温度为 $3000^{\circ} \mathrm{C}$ ，最高可能达 $5000^{\circ} \mathrm{C}$ 或稍高。地核还可进一步划分为外核和内核，外核与内核之间存在一个很薄的过渡层。其中外核厚度为 1742 km ，平均密度为 $10.4 \mathrm{~g} / \mathrm{cm}^{3}$ ，为液体圈；内核厚度约 1200 km ，平均密度为 $12.9 \mathrm{~g} / \mathrm{cm}^{3}$ ，为固体圈。过渡层厚度只有 515 km ，为液态向固体过渡的部分。

岩石圈 在地球内部圈层中，地壳与上地幔顶部的固体圈层称为岩石圈。岩石圈包括整个地壳和莫霍面以下，软流圈以上的固体岩石部分。地球内部圈层的划分如表 1.3 所示。

表1．3 地球内部圈层划分（据 PREM 资料补充）

分 层					$\begin{gathered} \text { 深度 } \\ \text { /km } \end{gathered}$	纵波波速$/(\mathrm{km} / \mathrm{s})$	$\begin{aligned} & \text { 横波波速 } \\ & \text { / (} \mathrm{km} / \mathrm{s} \text {) } \end{aligned}$	$\begin{gathered} \text { 密度 } \\ \left(\mathrm{g} / \mathrm{cm}^{3}\right) \end{gathered}$		其 他			
名称			代号										
地壳	上地壳		A	A1	15	5.8	3.2	2.60	横向变化大，固态 莫霍面 横向变化大，固态	岩 石 圈	构		
	下地壳			A2		6.8	3.9	2.90					
地	$\begin{aligned} & \text { 上 } \\ & \text { 地 } \\ & \text { 慢 } \end{aligned}$	盖 层	B	B1	$\begin{aligned} & 24 \\ & 80 \end{aligned}$	8.1	4.5	3.37					
		低速层		B2	220	8.0	4.4	3.36	塑性，速度小	软流圈			
		均匀层		B3	400	8.7	4.7	3.48	速度较均匀	中			
		过渡层	C			$\begin{aligned} & 9.1 \\ & 10.3 \end{aligned}$	$\begin{aligned} & 4.9 \\ & 5.6 \end{aligned}$	$\begin{aligned} & 3.72 \\ & 3.99 \end{aligned}$	速度梯度大 （最深地震720 km）				
	下地慢		D	D^{1}	1671	11.7	6.5	4.73	速度梯度变化小	间			
								速度梯度相等	圈				
			D^{3}	$\begin{aligned} & 2741 \\ & 2891 \end{aligned}$	13.7	7.3	5.55	速度梯度从零到剧增曰古登堡面液态，较均匀					
地		外 核		E		4771	$\begin{gathered} 8.0 \\ 10.0 \end{gathered}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 9.90 \\ 11.87 \end{gathered}$			
		过渡层		F		5150	10.2	0	12.06	速度梯度小，无间断面			
核		内 核	G		$\begin{aligned} & 11.0 \\ & 11.3 \end{aligned}$		$\begin{aligned} & 3.5 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 12.77 \\ & 13.09 \end{aligned}$	固态				

注：深度是全球平均值。

1．1．2．2 地球的外部圈层

地球的外部圈层分别为大气圈，水圈和生物圈。
大气圈 大气圈是包围着地球的气体，主要成分氮占 78.09% ，氧占 20.95% ，其他是氩 （ 0.93% ），二氧化碳（ 0.03% ），水汽，稀有气体和尘埃等，约占 1% 。大气圈的厚度在几万千米以上，由于受地心引力的吸引，以地球表面的大气圈最稠密，它提供生物需要的 CO_{2} 和 O_{2} ，对地貌形态变化起着极大的影响，向外逐渐稀薄，过渡为宇宙气体，所以大气圈没有明确的上界。

水圈 水圈主要是呈液态及部分呈固态出现的。它包括海洋，江河，湖泊，冰川，地下水等，形成一个连续而不规则的圈层。其中海水占 97.2% ，陆地水（包括江河，湖泊，冰川，地下水）只占 2.8% ；而在陆地水中冰川占水圈总质量的 2.2% ，所以其他陆地水所占比重是很微小的。

水在运动的过程中与地表岩石相互作用，作为一种最活跃的地质营力促进各种地质现象的发育。
生物圈 生物圈是地球表面有生物存在并受生物活动影响的圈层，是地球上生物（包括动植物和微生物）生存和活动的范围，从 3 km 深的地壳深处和深海底至 10 km 的高空均有生物存在，它渗透在水圈，大气圈下层和地壳表层的范围之中。生物通过新陈代谢方式，形成一系列生物地质作用，从而改变地表的物质成分和结构，是改造地表的主要动力之一。

1．1．3 地壳的化学成分

地壳是由岩石组成的，岩石是由矿物组成的，矿物则是由各种化合物或化学元素组成的。组成地壳的最主要的元素是氧，硅，铝，其次是铁，钙，钠，钾，镁，钛，氢。这十种元素共占地壳元素总重量的 99% ，其中硅，氧，铝三种元素就占了地壳元素重量的 83% 左右。大多数元素以化合物状态存在，少数以单一元素状态存在。不同学者得出的地壳中主要元素的平均质量百分含量如表1．4所示。可见，虽然不同化学元素占地壳质量百分比的数值略有差异，但整体分布规律是一致的，即其中的 $\mathrm{O}, ~ \mathrm{Si}, ~ \mathrm{Al}$ 为分布最多的三种元素。

表1．4 地壳中主要元素的平均质量百分含量
单位：\％

$\begin{aligned} & \text { 化学 } \\ & \text { 元素 } \end{aligned}$	据克拉克和华盛顿 （ 1924 ）	$\begin{gathered} \text { 据菲尔曼斯 } \\ (1933-1939) \end{gathered}$	据诺维格拉多夫 $\text { (} 1962 \text {) }$	$\begin{aligned} & \text { 据泰勒 } \\ & (1964) \end{aligned}$	$\begin{gathered} \text { 据夏邦栋 } \\ (1995) \end{gathered}$	据A．Φ ．亚库绍娃等 （ 1995 ）
O	49.52	49.13	47.00	46.40	46.95	46.50
Si	25.75	26.00	29.00	28.15	27.88	25.70
Al	7.51	7.45	8.05	8.23	8.13	7.56
Fe	4.70	4.20	4.65	4.63	5.17	6.24
Ca	3.29	3.25	2.96	4.15	3.65	5.79
Na	2.64	2.40	2.50	2.36	2.78	1.81
K	2.40	2.35	2.50	2.09	2.68	1.34
Mg	1.94	2.25	1.87	2.33	2.06	3.23
H	0.88	1.00	－	－	0.14	0.16
Ti	0.58	0.61	0.45	0.57	0.62	0.52
P	0.12	0.12	0.093	0.105	－	－
C	0.087	0.35	0.023	0.02	－	0.46
Mn	0.08	0.10	0.10	0.095	－	0.12

1．1．4 地质作用

地质作用是指由自然动力引起地球（最主要的是地幔和岩石圈）的物质组成，内部结构和地表形态发生变化的作用。主要表现为对地球的矿物，岩石，地质构造和地表形态等进行的破坏和建造作用。地质作用也是促使长期地质力学发展演化的原因，也就是工程地质条件形成的控制因素。

按照能源和作用部位不同，地质作用分为内动力地质作用和外动力地质作用。
内动力地质作用是由地球内部的能量（简称内能）引起的，主要有地内热能，重力能，地球旋转能，化学能和结晶能等；内动力地质作用主要包括构造运动（地壳运动， 2.1 节），岩浆活动（1．3．1节），变质作用（1．3．3节）和地震作用（6．5节）等。

外动力地质作用是由地球以外的能量（简称外能）引起的，主要有太阳辐射能，潮汐能，生物能等。外动力地质作用按作用的方式主要包括风化作用（1．3．4节），剥蚀作用，搬运作用，

沉积作用，固结成岩作用等（1．3．2节）；还可根据地质营力的不同分为：风的地质作用，河流的地质作用，地下水的地质作用，冰川的地质作用，湖泊和沼泽的地质作用以及海洋的地质作用等。

有些地质作用进行得十分迅速，如火山，地震，山崩，泥石流，洪水等，有些地质作用却进行得十分缓慢，往往不为人们感官所察觉，但经过悠久岁月却可产生巨大的地质后果。各种地质作用一方面不断地破坏原有的物质成分，地质构造和地表形态；另一方面又不断地形成新的物质成分，地质构造和地表形态。地质作用就是这样，在破坏，建设，再破坏，再建设中循环反复，促使地壳不断地变化和发展，成为地球不断更新的经久不息的动力。

内动力地质作用和外动力地质作用在地壳表层是永无停息的，其中对工程建筑有影响者称为物理（自然）地质作用，这种作用产生的现象称为物理地质现象。工程建筑与地质环境的相互作用称为工程地质作用，亦可称为人为地质作用，是由人类活动引起的地质效应，工程地质作用引起的现象称之为工程地质现象。例如采矿，特别是露天开采并移动大量岩体引起的地表变形，崩塌，滑坡；开采石油，天然气，地下水对岩土层树干排水造成的地面沉降；兴修水利造成土地淹没，盐渍化或者库岸滑坡，水库诱发地震等。另外，交通工程建设中的隧道，路基，桥梁等建构筑物对地质环境和岩土体的扰动，影响等，也是常见的工程地质作用。物理地质作用和工程地质作用合称为工程动力地质作用，其对工程和人类造成生命财产的损失者，则称之为地质灾害，如第 6 章中的滑坡，崩塌，泥石流，岩溶和地震等，是内，外动力地质作用，有时还包括工程地质作用同向耦合的结果。

1.2 主要造岩矿物

矿物是地质作用形成的，具有一定的化学成分和物理性质的物质，是组成地壳的基本物质单位。有的矿物是由一种元素组成的，如自然金，自然铜，金刚石等；有的矿物是由两种或两种以上的元素组成的，如岩盐，方解石，石膏等。各种矿物都有一定的化学成分和物理性质，例如石英是由硅和氧组成的透明或半透明的矿物，硬度较大，常呈柱状，雉状晶体；食盐是由氯和钠组成的，它是无色透明的四方颗粒。也有些矿物，化学成分相同，由于内部原子排列不相同，形成了性质完全不同的矿物。例如金刚石和石墨，化学成分都是碳，但两者的性质截然相反：金刚石是最硬的透明的矿物，石墨则是非常软的不透明的矿物。因而为了区别不同的矿物，就必须了解矿物的类型，形态及其物理力学性质。

组成地壳的岩石按其成因可分为岩浆岩，沉积岩和变质岩三大类。岩石是矿物的集合体，要认识岩石必须首先认识矿物。自然界中已发现的矿物种类有 3800 多种（不包括亚种），在岩石中经常见到，明显影响岩石性质，对鉴定和区别岩石种类起重要作用的矿物称为主要造岩矿物。自然界的主要造岩矿物大约有 20 多种。

1．2．1 矿物的分类

固体矿物按其内部构造可分为结晶质矿物和非晶质矿物。

1．结晶质矿物

结晶质矿物是指不仅具有一定的化学成分，而且组成矿物的质点（原子，分子和离子）在

三维空间呈有规律的周期性重复排列，形成稳定的空间结晶格子构造。结晶质矿物在生长过程中，若无外界条件限制，则可以生成被若干天然平面所包围的固定的几何形态，使其表现出规则的几何外形，这就是矿物固有的形态特征。矿物的这种具有规则外形的特征成为鉴定矿物的重要方法。

具有一定的结晶构造和一定的几何外形的固体称为晶体。如岩盐，具有由钠离子和氯离子在三维空间作等距离排列的格子构造，其外表形态为立方体 （图1．3）。

在结晶质矿物中，还可根据肉眼能否分辨晶体颗粒的边界而分为显晶质和隐晶质两类。若矿物晶粒可通过肉眼或放大镜辨别，则为显晶质矿物；若矿物颗粒非常细小，用肉眼或放大镜都不能分辩，需在显微镜下才能辨别的为隐晶质矿物。

图 1.3 岩盐的晶格构造

2．非晶质矿物

非晶质矿物的内部质点在三维空间的排列没有一定的规律性，杂乱无章，故其外表就为不规则的几何形态，如蛋白石，褐铁矿等。非晶质矿物又可分为玻璃质和胶体质两类。

造岩矿物大多数是结晶质的，有的非晶质矿物随时间增长可转化为结晶质矿物。

1．2．2 矿物的形态

矿物的形态主要受本身的内部结构和形成时外在环境的制约，可分为矿物单体形态和矿物集合体形态。

1．2．2．1 矿物的单体形态

常见的单晶体矿物形态有：
（1）片状，鳞片状，如绿泥石，白云母等，见图1．4；
（2）板状，如斜长石，板状石膏等；
（3）柱状，如长柱状的角闪石和短柱状的辉石等；
（4）立方体状，如岩盐，方铅矿，黄铁矿等，见图1．5；

图1．4 白云母

图1．5 黄铁矿
（5）菱面体状，如方解石等；
（6）菱形十二面体状，如石榴子石等。
另外，还有多面体状和针状等形态。

1．2．2．2 矿物集合体形态

自然界的矿物很少呈单体形态出现，绝大多数呈集合体形态，常见的集合体形态有：
（1）粒状，块状，土状。矿物晶体在空间三维方向上接近等长的他形集合体。当颗粒边界较明显时称粒状，如橄榄石；若肉眼不易分辨颗粒边界，致密者称为块状，如石英，蛋白石等；疏松的块状可称土状，如高岭石等。
（2）鲗状，豆状，葡萄状，肾状。矿物集合体呈同心构造的球形。像鱼卵大小的称鲗状，如鲕状赤铁矿，见图 1.6 （a）；近似黄豆大小的称豆状，如豆状赤铁矿，见图 1.6 （b）；不规则的球形体可称为葡萄状或肾状，如肾状赤铁矿，见图1．6（c）。

图1．6 赤铁矿的形态
（3）纤维状和放射状。由针状或柱状矿物集合而成，如红柱石的放射状集合体（图1．7）。
（4）钟乳状。由溶液失水凝聚而成，往往具有同心层状构造，如方解石的钟乳集合体（图 1.8 ）。

图1．7 红柱石的放射状集合体

图1．8 方解石的钟乳状集合体

1．2．3 矿物的光学性质

矿物的光学性质是指矿物对自然光的吸收，反射和折射等所表现出来的各种特征，主要包括颜色，条痕，光泽和透明度等特征。

1．颜 色
矿物的颜色是由矿物的化学成分和内部结构决定的，矿物五彩缤纷的颜色是其明显的鉴定

特征。很多矿物的名称就是因其具有特殊的颜色而得名的，如孔雀石（翠绿色），黄铜矿（铜黄色），赤铁矿（红色，又名红铁矿）等。同一矿物可以表现出不同的颜色，其颜色的变化通常是由于矿物中掺杂了对矿物基本特征没有影响的少量的化学杂质而造成的。当纯净矿物为浅色或无色时，颜色变种现象就比较普遍。例如，石英矿物，纯净时无色，当石英中掺有不同的杂质时会呈现出不同的颜色，如粉色，金黄色，烟棕色，紫色和常见的乳白色等。很明显，石英并不能仅依据它自身的颜色来鉴别。

根据矿物颜色产生的原因，可分为自色，他色和假色三种。
（1）自色：矿物自身所固有的颜色。自色产生的原因，主要与矿物成分中某些有色离子的存在有关。如 Fe^{3+} 使赤铁矿呈樱红色， Fe^{2+} 使普通角闪石，绿泥石呈暗绿色等。
（2）他色：矿物因含外来带色杂质而引起的颜色。如石英的异常色彩等。
（3）假色：由某些物理化学因素引起的呈色现象。如黄铁矿表面因氧化引起的锖色（蓝紫混杂的斑驳色彩）。

需要强调的是，矿物颜色的鉴别是指矿物新鲜表面上的颜色。
2．条 痕
矿物的条痕指矿物在白色粗糙瓷板上刻划时遗留在瓷板的矿物粉末颜色。对某一矿物来说，条痕的颜色是唯一的，如赤铁矿颜色很多，有红色，钢灰色，铁黑色等多种颜色，但条痕总是樱红色，因而条痕成为鉴定矿物的一个很重要的特征。但大多数浅色矿物的条痕是无色或浅色的，条痕对浅色矿物鉴别的意义不大。某些深色矿物的条痕与颜色相同，这些矿物的条痕对鉴别矿物意义也不大。只有矿物的条痕与其颜色不同的某些深色矿物才是有用的鉴别矿物的特征。例如，角闪石呈黑绿色，条痕为淡绿色；辉石为黑色，条痕为浅绿色；黄铁矿为铜黄色，条痕为黑色等。

3．光 泽

矿物的光泽是指矿物新鲜表面对光的反射能力。根据反射光由强到弱的次序可分为：
（1）金属光泽：反射强烈，类似小刀，金，银的反光，例如自然铜，方铅矿，黄铁矿等。
（2）半金属光泽：反光较强，但较金属光泽稍弱，有点类似没有磨光的金属器血的反光，如辰砂，黑钨矿，赤铁矿等。
（3）非金属光泽：矿物表面的反光能力较弱，是大多数非金属矿物如石英，滑石等所固有的光泽。

常见的非金属光泽有：
（1）金刚光泽：是非金属矿物具有的最强光泽，光彩夺目，像金刚石状光亮，如金刚石，锡石，浅色闪锌矿等。
（2）玻璃光泽：反光较弱，像玻璃表面的光泽，自然界多数矿物是玻璃光泽，如水晶，正长石，冰洲石等。
（3）油脂光泽：在不平坦的断口上所呈现的像板油那样的光亮，如石英的断口上的光泽。
（4）珍珠光泽：片状矿物集合体或片状解理发育时所呈现的光泽，像珍珠一样反光，如云母解理面上的光泽。
（5）丝绢光泽：纤维状矿物集合体表面像丝绸一样反光，如石膏，绢云母等。
（6）土状光泽：矿物表面粗糙，光泽暗淡，像土块一样，如高岭石等。
4．透明度
矿物的透明度是指矿物能够透光的能力。根据矿物透过光线的能力，可分为三级：透明的，

半透明的和不透明的。例如：纯净的石英单晶体和纯净方解石组成的冰洲石为透明矿物；多数造岩矿物为半透明矿物，如一般石英集合体，滑石等；金属矿物则为不透明矿物，如黄铁矿，方铅矿，磁铁矿等。

颜色，条痕，光泽和透明度都是矿物的光学性质，是由于矿物对光线的吸收，折射和反射所引起的，它们之间存在着一定的联系（表1．5）。例如，颜色和透明度以及光泽和透明度之间都有相互消长的关系。矿物的颜色越深，说明它对光线的吸收能力越强，光线也就越不容易透过矿物，透明度也就越差。同理，矿物的光泽越强，说明投射于矿物表面的光线大部分被反射了，于是通过折射而进入矿物内部的光线也就越少，透明度也就越差。

表1．5 矿物颜色，条痕，光泽和透明度的关系简表

颜色	无色	浅色	彩色	黑色或金属色（部分硅酸盐矿物除外）				
条痕	白色或无色	浅色或无色	浅色或彩色	黑色或金属色				
光泽	玻璃	金刚	半金属	金属				
透明度	透明						半透明	不透明

1．2．4 矿物的力学性质

矿物的力学性质是指矿物在外力（敲打，刻划，拉压等）作用下表现出来的各种物理性质。包括硬度，解理（䢃开）和断口等。其中硬度和解理在矿物鉴定方面最有意义。

1．硬 度
矿物的硬度是指矿物抵抗外力摩擦和刻划的能力，通常是指矿物的相对软硬的程度。在矿物的肉眼鉴定工作中，通常采用莫氏硬度计，见表1．6。莫氏硬度是德国矿物学家弗里克•莫斯 （Friedrich Mohs）于 1812 年根据 10 种标准矿物的相对软硬程度提出的硬度定性级别。

表 1.6 莫氏硬度计

矿物	滑石	石膏	方解石	萤石	磷灰石
化学分子式	$\mathrm{Mg}_{3}\left[\mathrm{Si}_{4} \mathrm{O}_{10}\right][\mathrm{OH}]_{2}$	$\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	CaCO_{3}	CaF_{2}	$\mathrm{Ca}\left[\mathrm{PO}_{4}\right]_{3}[\mathrm{~F}, \mathrm{Cl}]$
硬度 $/\left({ }^{\circ}\right)$	1	2	3	4	5
矿物	正长石	石英	黄玉	刚玉	金刚石
化学分子式	$\mathrm{K}\left[\mathrm{AlSi}_{3} \mathrm{O}_{8}\right]$	SiO_{2}	$\mathrm{Al}_{2}\left[\mathrm{SiO}_{4}\right][\mathrm{F}, \mathrm{OH}]_{2}$	$\mathrm{Al}_{2} \mathrm{O}_{3}$	C
硬度 $/\left({ }^{\circ}\right)$	6	7	8	9	10

测定某矿物的硬度，只需将该矿物同硬度计中的标准矿物相互刻划，进行比较即可。如某矿物能刻划长石，但不能刻划石英，则该矿物的硬度介于 $6 \sim 7$ 。需要注意的是，莫氏硬度计给出的硬度值表示各种矿物硬度的相对高低，而不能表明硬度的绝对大小。例如，滑石的硬度为 1 ，石英的硬度为 7 ，并不代表石英的硬度是滑石的 7 倍。根据力学测定，滑石的硬度仅为石英的 $1 / 3500$ ，而金刚石的硬度则为石英的 1150 倍。

在野外调查时，当缺少莫氏标准矿物时，可用其他简便工具进行测试。如指甲（硬度 $2 \sim$ 2.5 ），铜铎匙（硬度 3 ），低碳钢小刀（硬度 $5 \sim 5.5$ ），玻璃片（硬度 $5.5 \sim 6.5$ ）粗测矿物的硬度。在鉴别矿物的硬度时应注意要在矿物的新鲜表面上或解理面上进行。

2．解理（䢃开）

矿物受外力敲击时，能够沿一定方向规则裂开的性能称为矿物的解理性，开裂的平面称为解理面。解理是沿矿物软弱结合面裂开的趋向性，通常沿平行于晶体结构中相邻质点间联结力弱的方向发生。有些矿物具有几个解理面，有些矿物缺乏解理，而另一些矿物完全没有解理。一种矿物表现出解理时，可以裂成与其原样一致的碎块（片）；相比而言，无解理的矿物，在其裂开时，不可能裂成与原晶体一样的形状。

根据矿物受力时是否易于沿解理面破裂，以及解理面的大小和平整光滑程度，一般将解理分为：
（1）极完全解理：晶体可裂成平滑而薄的薄片，解理面大而平整，光滑，如云母沿解理面可剥离成极薄的薄片。
（2）完全解理：晶体常沿解理面裂成小块，解理面平整但不大，如方铅矿，岩盐沿解理面破裂成立方体，见图1．9。
（3）中等解理：解理面小而不光滑，如角闪石。
（4）不完全解理：晶体上常见断口，偶见解理，如橄榄石。
（5）极不完全解理：矿物无解理，见到的都是断口，如石英，黄铁矿等。
3．断 口
矿物受外力敲击后，沿任意方向发生不规则断裂，其破裂面称为断口。根据断口形态有参差状断口，平坦状断口，锯齿状断口，土状断口及贝売状断口（图1．10）。

图1．9 岩盐的立方体完全解理

图1．10 石英的贝壳状断口

1．2．5 其他性质

矿物的某些特殊性质，如发光性，磁性，压电性，放射性，特殊的味道等仅存在于少数矿物中。这些性质除了可用于鉴定矿物之外，在工业上也具有相当价值。

1．发光性
当矿物受到外界因素的作用，如紫外线，阴极射线照射等，能显示多种色彩，叫作荧光。而当光源移走后，被照射的矿物还继续发光，就称为磷光。荧光的命名来源于萤石，萤石就能发射出这种光线。金刚石在 X 射线下则发出天蓝色荧光。而方解石在紫外线的照射后，能发红，紫，蓝色的磷光。

2．磁 性

矿物的磁性是指矿物能被磁铁吸引或排斥，如磁铁矿，自然铋等。磁性可作为矿物重要的鉴定特征，还可用作磁石，以及冶金业的选矿和找矿。一般用磁铁或磁针进行矿物的磁性试验。

3．压电性

当不导电的矿物晶体，受到定向压力作用时，能在晶体表面产生电荷的性质，就是压电性。石英手表就是利用了石英的压电性质。

4．放射性

含铀，钍，镭等放射性元素的矿物，因这些元素的蜕变作用，放出 $\alpha, ~ \beta, ~ \gamma$ 射线，这种性质称为放射性。当矿物具有放射性时，可用盖氏计算器测量。

1．2．6 矿物的鉴定方法

矿物的鉴定方法很多，工程地质工作中大量采用的是肉眼鉴定，还配合一些简单的工具，如地质锤，小刀，放大镜，毛瓷板，稀盐酸等。矿物的鉴定主要是运用矿物的形态以及矿物的物理力学性质等特征来鉴定的。

最有用的矿物鉴定特征有：形状，颜色，硬度，解理等。鉴定矿物时，先观察矿物的颜色，确定它是浅色的，还是深色的。然后鉴定矿物的硬度，在颜色相同的矿物中，硬度相同或相近的只有少数几种。通过看颜色，定硬度，可逐步缩小被鉴定矿物的范围。最后，根据矿物的解理，断口及其他特征，确定出矿物的名称。在自然界中也有许多矿物，它们在形态，颜色，光泽等方面有相同之处，但每一种矿物往往具有它自己的独特的特点，鉴别时利用这个特点，即可较准确地鉴别矿物。另外，如云母薄片有弹性，方解石有可溶性，滑石有滑感，高岭石有吸水性（粘舌）等也是有用的鉴定标志。

主要造岩矿物及其鉴定特征等内容详见附录 1 。

1.3 岩石的地质成因与特性

经地质作用形成的矿物或岩屑组成的集合体称为岩石。自然界岩石种类繁多，根据其成因可分为岩浆岩，沉积岩，变质岩三大类。

三大岩类构成了地壳和岩石圈，但它们在地壳中的分布是不均匀的。若按质量计算，沉积岩仅占地壳质量的 5% ，变质岩占 6% ，岩浆岩占 89% 。但若按各类岩石在地表的分布面积计算，则沉积岩占陆地面积的 75% ，变质岩和岩浆岩合计只占 25% 。从分布特点看，岩浆岩主要分布于岩石圈的深处，沉积岩分布于岩石圈最外层且呈厚度不均地不连续分布，而变质岩则主要分布于地下较深处的构造活动带和岩浆活动带的周围。

1．3．1 岩浆岩

通过对古代火山产物和当代火山活动的长期观察和综合研究发现，火山活动时不但有蒸气，石块，晶屑和熔浆团块自火山口喷出，而且还有炽热黏稠的熔融物质自火山口溢流出来，这说明地球的深处确实有高温炽热物质存在并活动。这种产生于地球深处，含挥发成分 $\left(\mathrm{CO}_{2}\right.$ ， $\mathrm{CO}, ~ \mathrm{HCl}, ~ \mathrm{SO}_{2}$ ， N_{2} ， HF 等气体），高温黏稠的硅酸盐物质的熔融体就是岩浆。

岩浆沿着地壳薄弱带向上侵入地壳或喷出地表，逐渐冷凝最后形成的岩石称为岩浆岩。从岩浆的产生，活动到岩浆冷凝固结成岩的全过程称为岩浆作用。按岩浆活动的特点可分为侵入作用和喷出作用。岩浆喷出地表而冷凝成岩浆岩的活动过程称为喷出作用，也叫火山作用，形成的岩浆岩也叫火山岩。岩浆从地球深处向地面上升运移过程中，在地壳岩石内部冷凝成为岩

浆岩的活动过程叫侵入作用，形成的岩浆岩称为侵入岩。根据侵入深度的不同，可将侵入岩分为深成侵入岩（深度大于 3 km ）和浅成侵人岩（深度小于 3 km ）。

1．3．1．1 岩浆岩的矿物成分

地壳中已知的矿物有 3800 多种，但组成岩浆岩的最主要的矿物却不过 $20 \sim 30$ 多种，以硅酸盐矿物为主，其中最多的是长石，石英，黑云母，角闪石，辉石，橄榄石等（以上矿物中仅石英属于氧化物），占岩浆岩矿物总含量的 99% ，是主要的造岩矿物。根据统计资料表明，地壳中已发现的元素在岩浆岩中几乎都能找到，它们主要以 $\mathrm{SiO}_{2}, ~ \mathrm{Al}_{2} \mathrm{O}_{3}, ~ \mathrm{Fe}_{2} \mathrm{O}_{3}, ~ \mathrm{FeO}, ~ \mathrm{MgO}$ 等氧化物组成，占氧化物总重量的 99% 以上，称为主要造岩氧化物，其中又以 SiO_{2} 含量最高，达 59% 以上，所以 SiO_{2} 是岩浆岩的最主要化学成分。一般情况下，当岩石中 SiO_{2} 含量多时，岩石的颜色浅； SiO_{2}含量少时，岩石的颜色则深。所以用 SiO_{2} 量的多少作为划分岩浆岩类型的依据，见表1．7。

表 1.7 岩浆岩按 SiO_{2} 含量分类

岩浆类型	SiO_{2} 含量／\％	颜色	稀稠	密度
酸性的	>65	$\begin{gathered} \hline \text { 浅 } \\ 4 \\ \text { 深 } \end{gathered}$	稠	小
中性的	$65 \sim 52$		$\underset{\text { 稀 }}{4}$	$\begin{aligned} & \uparrow \\ & \text { 大 } \end{aligned}$
基性的	$52 \sim 45$			
超基性的	＜ 45			

1．3．1．2 岩浆岩的产状

岩浆岩的产状是指岩浆冷凝后岩体的形态，岩体所占据的空间以及它与围岩的相互关系，如图1．11所示。侵入岩一般位于地下无法直接看到，只有当侵人岩隆起或遭受侵蚀后才能看到并研究它们。

1．侵入岩的产状
按侵入岩体与围岩关系分为以下几类：
（1）岩基。岩基是规模最大的深成侵入岩体，其出露地表面积一般大于 $100 \mathrm{~km}^{2}$ ，岩体范围大，与围岩的接触面不规则。如海南岛琼中花岗岩体为一巨大岩基，出露面积达 $5000 \mathrm{~km}^{2}$ 。我国秦岭，祁连山及南岭等地，主要为花岗岩的岩基。由于岩基在形成过程中埋藏较深，岩浆冷凝的速度慢，结晶程度好，质地均匀，强度较高，因而常被选作适宜的建筑物地基。

1 —火山锥； 2 —熔岩流；3—熔岩被； 4 —岩基； 5 —岩株；
6 —岩墙；7—岩床；8—岩盘；9—岩盆；10—捕虏体。
图1．11 岩浆岩的产状
（2）岩株。面积小于 $100 \mathrm{~km}^{2}$ 的侵入体，规模较岩基小，平面常呈圆形或不规则形状，与围岩接触较陡直，有时是岩基的一部分，其特点与岩基相近。如北京周口店花岗闪长岩体的产状为岩株，平面近圆形，出露面积约 $56 \mathrm{~km}^{2}$ 。
（3）岩盘。当岩浆侵入上部岩层后，使上覆岩层隆起，岩浆冷凝形成的面包状岩体，称为岩盘。如山东济南辉长岩体，底部平坦，顶部拱起，中间厚度大而边缘薄。
（4）岩床。岩床为板状侵入体，产状和围岩的层面一致，以厚度稳定为特征。
（5）岩墙和岩脉。岩浆沿近垂直的围岩裂隙侵入形成的岩体叫岩墙，长几十米至几千米，

宽几米至几十米；岩浆侵入围岩的各种断层和裂隙中，形成的脉状岩体，称岩脉，长几厘米至几米，宽几毫米至几米。

2．喷出岩的产状
（1）火山颈。火山喷发时，岩浆在火山口通道里冷凝形成的岩体，呈直立的不规则圆柱形岩体。
（2）火山锥。岩浆沿着火山颈喷出地表，形成圆锥状的岩体称为火山锥，其物质由火山喷发的碎屑及熔岩组成。如我国黑龙江五大连池的火山群，山西大同的火山群都属于火山锥。
（3）熔岩流（岩被）。岩浆喷出地表后，沿着地表流动冷凝固结而形成熔岩流。

1．3．1．3 岩浆岩的结构与构造

1．岩浆岩的结构

岩浆岩的结构是指岩石中矿物的结晶程度，晶（颗）粒大小，晶（颗）粒形态及晶（颗）粒之间的相互关系。结构决定了岩石内部连接的情况，直接影响着岩石的工程性质。岩浆岩的结构是划分与鉴定岩浆岩的主要依据之一。
（1）按结晶程度可分为：
（1）全晶质结构。岩石全部由结晶质矿物组成，如图1．12（a）所示，多见于深成岩和浅成岩中，如花岗岩，花岗斑岩等。
（2）半晶质结构。结晶质，非晶质矿物各半组成的岩石，如图1．12（b）所示。
（3）玻璃质结构。岩石全部由非晶质或玻璃质矿物组成，均匀致密似玻璃，是由于岩浆快速喷出地表，骤然冷凝，所有矿物来不及结晶就凝固而成，如图1．12（c）所示，为喷出岩所特有的结构。

a—全晶质结构；b—半晶质结构；c—玻璃质结构。
图1．12 按结晶程度划分的三种结构

1—斑晶；2—基质。
图 1.13 斑状结构
（2）按矿物颗粒大小可分为：
（1）等粒结构。指岩石中的矿物颗粒全部是显晶质（肉眼或放大镜可辨别的）颗粒，主要矿物大小大致相等的结构。按矿物颗粒大小可进一步划分为：伟晶结构，粒径 $>10 \mathrm{~mm}$ ；粗粒结构，粒径 $5 \sim 10 \mathrm{~mm}$ ；中粒结构，粒径 $2 \sim 5 \mathrm{~mm}$ ；细粒结构，粒径 $0.2 \sim 2 \mathrm{~mm}$ ；微粒结构，粒径 $<0.2 \mathrm{~mm}$ 。
（2）不等粒结构。指岩石中同种主要矿物颗粒大小不等，这种结构多见于深成侵入岩周边部位或浅成侵入岩中。
（3）隐晶质结构。矿物颗粒非常细小，用肉眼或放大镜都不能分辨，需在较高倍显微镜下才能辨认出结晶颗粒的结构。这种结构很致密，一般无玻璃光泽和贝壳状断口，不像玻璃那样脆，常有瓷状断面。多见于浅成岩和一些喷出岩中，抗风化能力较强。
（4）斑状结构。指岩石中较大的矿物晶体被细小的晶粒或隐晶质，玻璃质矿物所包围的一种结构。较大的晶体矿物称为斑晶，如图1．13所示；细小的晶粒或隐晶质，玻璃质矿物称为基质。如果基质为显晶质时称似斑状结构，基质为隐晶质或玻璃质时称为斑状结构。斑状结构为浅成岩及部分喷出岩所特有的结构，典型的岩石如花岗斑岩，其形成是由于岩浆侵入地壳浅部，冷凝很快，在不利于结晶的条件下形成的。具有斑状结构的岩石，结构不均一，一般抗风化能力较差，易于剥落。

2．岩浆岩的构造

岩石的构造是指岩石中不同矿物与其他组成部分之间在空间的排列与充填方式上所反映出来的岩石外貌特征。常见的岩浆岩的构造有下列几种：
（1）块状构造。矿物在整个岩石中分布是均匀的，其排列无一定次序，无一定方向，不显层次，呈致密块状。它是岩浆岩中最常见的一种构造。
（2）流纹状构造。由于熔岩的流动，岩石中不同颜色的条纹，拉长的气孔和长条形矿物，按一定方向排列形成的一种流动状构造。它反映岩浆喷出地表后流动的痕迹，这种构造仅出现于喷出岩中，如流纹岩，是酸性熔岩中最常见的构造。
（3）气孔状构造。岩浆喷出地表后由于压力急剧降低，岩浆凝固时，挥发性的气体未能及时逸出，在岩石中留下许多圆形，栯圆形或长管形的孔洞，是喷出岩所具有的构造。如浮岩，见图1．14。

图1．14 气孔构造
（4）杏仁状构造。喷出岩的气孔被某些次生矿物（如方解石）填充，像杏仁一样，故称杏仁状构造。杏仁状构造多见于喷出岩中，如北京三家店一带的辉绿岩就具有典型的杏仁状构造。

1．3．1．4 岩浆岩分类及常见岩浆岩的鉴定特征

1．岩浆岩分类
根据岩浆岩的产状，结构，构造，矿物成分及其共生规律等特征进行分类，如表1．8所示。
2．常见岩浆岩的鉴定特征
根据岩浆岩所含的 SiO_{2} 含量及形成特点，可将常见的岩浆岩分别简述如下。
（1）超基性岩类。
橄榄岩：属于深成侵人岩，黑色或暗绿色，组成矿物以橄榄石（ $40 \% \sim 90 \%$ ），辉石（ $5 \% \sim$ 50% ）为主，其次为角闪石，斜长石，云母等，很少或无长石。中粒等粒结构，块状或条带状构造。在地表条件下橄榄石极易风化变成蛇纹石，使颜色变浅。
（2）基性岩类。
（1）辉长岩。一种深成侵入岩，灰黑，暗绿色，主要矿物为辉石和斜长石，有少量的角闪石和橄榄石。中粒等粒结构，块状构造。暗色和浅色矿物含量大致相等。
（2）辉绿岩。属于浅成侵人岩，矿物成分，颜色与辉长岩相同，但粒度很细。辉石与斜长石颗粒大致相近，常呈岩墙，岩床或岩盘产出。结晶质细粒结构，块状构造。
（3）玄武岩。属于典型的喷出岩，分布最广，是地球洋壳和月球月海的最主要组成物质，也

是地球陆壳和月球月陆的重要组成物质。黑色，灰绿色，灰黑色至暗紫色，主要矿物成分为基性斜长石，辉石，其次为橄榄石等。具隐晶，细晶或斑状结构，杏仁构造或气孔构造。玄武岩因其岩浆黏度较小，易于流动，通常以大面积的熔岩流产出，我国云，贵，川等地有大面积的玄武岩分布，且常具柱状节理。

表1．8 岩浆岩分类

岩石类型						超基性岩	基性岩	中性		酸性岩
$\begin{aligned} & \text { 物 } \\ & \text { 质 } \\ & \text { 成 } \\ & \text { 分 } \end{aligned}$	SiO_{2} 平均含量 1%					＜45	45～52	$52 \sim 6$		>65
	石英含量／\％					无或军见	少见	$0 \sim 2$		＞20
	长石含量／\％					无或军见	斜长	石为主	钾长	为主
	暗色矿物含量／\％					$\begin{array}{\|c} \hline 95 \\ \text { (橄榄石, 辉 } \\ \text { 石, 角闪石) } \\ \hline \end{array}$	$\begin{gathered} 45 \sim 50 \\ \text { (辉石, 角闪 } \\ \text { 石, 橄览石) } \end{gathered}$	$30 \sim 45$ （角闪石，黑云 母，辉石）	20 （角闪石， 黑云母）	$\begin{gathered} \hline 10 \\ \text { (角闪石, } \\ \text { 黑云母) } \end{gathered}$
岩石颜色						深色 \longrightarrow 浅色				
岩石密度						大 \longrightarrow 小				
产 状	喷出岩		玻璃		气孔	金伯利岩	黑曜	岩 浮岩 珍珠岩 松校		
			隐晶		杏仁		玄武岩	安山岩	粗面岩	流纹岩
			斑状		流纹		玄武玢岩	安山玢岩	纳长玢岩	石英斑岩
			伟晶	构				煌斑岩 细晶岩	伟晶岩	
	岩		细晶斑状	造	块状		辉绿岩辉长玢岩	闪长玢岩	正长斑岩	花岗斑岩
	深成岩		粒状		块状	橄榄岩辉岩	$\begin{gathered} \text { 辉长岩 } \\ \text { (斜长岩) } \end{gathered}$	闪长岩	正长岩	花岗岩

（3）中性岩类。
（1）闪长岩。属深成侵入岩。浅灰，灰绿等色，组成矿物以角闪石和斜长石为主，正长石，云母，辉石为次要矿物，很少或没有石英。中，细粒粒状结构，块状或斑杂构造。大部分和花岗岩或辉长岩呈过渡关系。
（2）闪长玢岩。为浅成侵入岩。灰或灰绿色，矿物成分与闪长岩相同，斑晶由斜长石或角闪石组成。基质有微晶—隐晶斜长石，角闪石组成，斑状或似斑状结构，中细粒或微粒结构，块状构造。
（3）安山岩。属喷出岩。灰色，风化后为灰褐色，灰绿色，红褐色。主要矿物成分为斜长石，角闪石，无石英或极少，一般为斑状结构，斑晶多为斜长石及角闪石。少量为隐晶质结构或玻璃质结构。常见块状构造，杏仁或气孔构造，气孔中常为方解石所充填。安山岩常以块状熔岩流等产出。
（4）正长岩。属深成侵入岩。一般为肉红色，灰黄色或灰白色，主要矿物以正长石为主，有时也含少量斜长石。暗色矿物有黑云母，角闪石等，无石英。中粒等粒结构，块状构造。
（4）酸性岩类。
（1）花岗岩。是分布最广的深成岩类，其分布面积占所有侵入岩面积的 80% 以上。肉红，浅灰，灰白等色，主要由正长石（ 40% ），石英（ 30% ）和斜长石（ 20% ）组成，黑云母，角闪石等为次要矿物。通常钾长石多于斜长石，石英可达 20% 以上。中，粗等粒结构，块状构造。花岗岩质地均匀，坚固，颜色美观，广泛用作地基，桥梁，纪念碑等的建筑石材。
（2）花岗斑岩。属浅成侵入岩。主要矿物成分同花岗岩，斑状结构，斑晶为石英和钾长石，基质由细小的长石，石英及其他矿物组成，颜色与构造同花岗岩。
（3）流纹岩。属喷出岩。浅灰，灰红等色，矿物成分同花岗岩。隐晶质斑状结构，斑晶主要为钾长石，石英等，基质为隐晶质或部分玻璃质；有时为隐晶无斑结构，常有流纹构造。
（5）脉岩类。
在岩体边缘或围岩裂隙中，常见有与深成岩体有一定成分和成因联系的岩脉，岩墙等，其构成岩石通称为脉岩类。

伟晶岩：具有伟晶结构的浅色脉岩，主要由巨粒（颗粒一般大于 10 mm ）的石英，长石，白云母等浅色矿物组成。其主要矿物成分与花岗岩相似，不同之点是暗色矿物含量较少（有时出现黑云母）。伟晶岩多以脉体或透镜体产于母岩及其围岩中，并常富集成长石，石英，云母，宝石及各种稀有元素矿床。
（6）火山玻璃类。
由火山喷发出来的熔岩，迅速冷却来不及结晶而形成的一种玻璃质结构岩石。因酸性熔浆黏度大，温度低，在迅速冷却条件下更容易形成玻璃质，所以火山玻璃岩以酸性为主。
（1）黑曜岩。一种酸性火山玻璃岩。呈褐，黑，红等色，致密块状和熔渣状玻璃质岩石，玻璃光泽，具光滑的及标准的贝壳状断口，边缘微透明。常含磁铁矿，辉石微粒。
（2）浮岩。一种多气孔的玻璃质岩石，典型的浮岩多产于酸性熔岩的上部或火山碎屑中。通常为白色或浅灰色，状似炉渣，颜色浅淡，多为白色，灰白色。成分接近流纹岩。玻璃质结构，气孔构造。其气孔体积大大超过玻璃质体积，故相对密度较小（相对密度 $0.3 \sim 0.4$ ），可浮于水而得名。

1．3．2 沉积岩

沉积岩是在地表或接近地表的条件下，由母岩（岩浆岩，变质岩和早期的沉积岩）风化，剥蚀的产物和某些火山作用形成的物质经搬运，沉积，而后硬结形成的岩石。沉积岩呈层状广泛分布于地壳表层，是区别于其他类型岩石的重要标志之一。由于沉积岩形成的地表环境十分复杂（如海陆分布，气候条件，生物状况等），同一时代不同地区或同一地区不同时代，其地理环境往往不同，从而所形成的沉积岩也互有差异，各种沉积岩都毫无例外地记录下了沉积时的地理环境信息。因此，沉积岩是重塑地球历史和恢复古地理环境的重要依据。同时，沉积岩中还蕴藏着大量的沉积矿产，如煤，石油，天然气，盐类等。据统计，沉积岩中的矿产占世界全部总矿产值的 $70 \% \sim 75 \%$ 。

1．3．2．1 沉积岩的物质成分

组成沉积岩的矿物有 160 余种，但较重要的有 20 余种，如石英，长石，云母，黏土矿物，碳酸盐矿物，卤化物及含水的氧化铁，锰，铝等矿物。一种沉积岩中含有的主要矿物一般不超过 $3 \sim 5$ 种。与岩浆岩的矿物成分相比，沉积岩的矿物成分有如下特点：（1）在岩浆岩中大量存在的橄榄石，辉石，角闪石和黑云母等铁镁质矿物在沉积岩中少见；（2）长石，石英，白云母在岩浆岩和沉积岩中都比较多，但钾长石和石英在沉积岩中更多；（3）盐类矿物，碳酸盐类矿物和黏土矿物则是沉积岩中所特有的矿物；（4）生物组分是沉积岩所特有的。

1．3．2．2 沉积岩的形成过程

沉积岩的形成可概括为以下几个过程。

1．母岩的风化和剥蚀作用

暴露于地表或接近地表的各种岩石，在温度变化，水及水溶液的作用，大气及生物作用下在原地发生的破坏作用，称为风化作用。风化作用是一切外力作用的开端，使得地壳表层岩石逐渐崩裂，破碎，分解，同时也形成新环境条件下的新稳定矿物。风化作用是破坏地表和改造地表的先行者，是使地表形态和成分不断发生变化的重要力量，是沉积物质的重要来源之一。有关风化作用更为详细的论述详见本章 1．3．4节。

岩石遭受风化之后，为风，流水，地下水，冰川，湖泊，海洋等外动力对岩石的破坏提供了物质条件。各种外力在运动状态下对地面岩石及风化产物的破坏作用，总称为剥蚀作用。剥蚀作用不仅破坏地壳的组成物质，还不断改变着地球表面的形态。剥蚀作用可分为风的吹蚀作用，流水的侵蚀作用，地下水的潜蚀作用，海水的海蚀作用和冰川的冰蚀作用等。例如：风的吹蚀作用体现在，一方面吹起地表风化碎屑和松散岩屑（称吹凮作用），另一方面还挟带着岩屑对岩石产生磨蚀（称磨蚀作用）。流水也和风一样，其动能不仅冲击着地表风化的或松散的岩矿碎屑（称冲蚀作用），而且水流还挟带着碎屑作为工具进一步磨蚀着岩石（称磨蚀作用）。占大陆面积约 10% 的冰川，其冰蚀作用也是很强大的， 100 m 厚的冰川，底部就要承受 $90000 \sim$ $96000 \mathrm{~kg} / \mathrm{m}^{2}$ 的压力；运动着的冰川，特别是挟带着大量岩屑石块（称冰碛）的冰川，就像耕地的犁耙一样破坏着冰川谷壁或谷底的岩石（称刨蚀作用）。海水的海蚀作用也极为显著，海浪拍打海岸岩石，其压力强度能达 $38 \mathrm{t} / \mathrm{m}^{2}$ 。所以，在海浪直接冲击之下，再加上以所挟带的岩屑碎块为磨蚀工具，海岸岩石破坏速度是相当迅速的。

从剥蚀作用的性质来看，可分为机械的剥蚀作用和化学的剥蚀作用两种方式。前者是指风，流水，冰川，海洋等对地表物质的机械破坏作用；后者是指流水，地下水，湖泊，海洋等对岩石以溶解等方式进行的破坏作用，又可称之为溶蚀作用。特别是在石灰岩，白云岩地区，这种作用更为显著，通称喀斯特作用（亦称岩溶作用）。

剥蚀作用和风化作用都是引起地表岩石破坏的基本作用方式。两者不同之处主要在于前者是流动着的物质对地表岩石起着破坏作用，而后者是相对静止地对岩石起着破坏作用。但两者互相依赖，互相促进，岩石风化有利于剥蚀，而风化产物被剥蚀后又便于继续风化，从而加剧了地表岩石的破坏作用，并源源不断地为沉积岩的形成提供着充足的物质来源。

岩石经风化剥蚀后形成的产物按其性质可分为：
（1）碎屑物质：这类物质是母岩机械破碎的产物，如石英砂粒，云母碎片等，这类物质除未遭分解的矿物碎屑外，还有母岩直接机械破碎而成的岩石碎屑。
（2）黏土物质：这是母岩在分解过程中残余的或新生成的黏土物质。它们常是化学风化过程中呈胶体状态的不活泼的物质，如 $\mathrm{Al}_{2} \mathrm{O}_{3}, ~ \mathrm{SiO}_{2}$ 等，在适合的条件下就形成黏土矿物，也有部分黏土物质是机械磨蚀的碎屑物质。
（3）溶解物质：主要是活动性较大的金属元素，如 $\mathrm{K}, ~ \mathrm{Na}, ~ \mathrm{Ca}, ~ \mathrm{Mg}$ 等以离子状态形成的真溶液，而 $\mathrm{Al}, ~ \mathrm{Fe}, ~ \mathrm{Si}$ 等的氧化物呈胶体状态形成胶体溶液，它们在适当的条件下就形成化学沉积物质。

这三类风化产物当其分别沉积时，就构成了三大类沉积岩的基本物质：碎屑物质构成碎屑岩的主要成分；黏土物质组成黏土岩；溶解物质则组成化学岩和生物化学岩。此外，还有火山作用形成的沉积物质，生物作用形成的沉积物质等。

2．沉积物的搬运作用和沉积作用
母岩的风化产物除了少部分残留原地组成堆积风化壳外，大部分被搬运走，并在新的环境

中沉积下来。由于三种风化产物的性质不同，它们的搬运，沉积方式也不同。按其搬运的方式可分为：机械搬运，化学搬运和生物搬运。
（1）机械搬运。
碎屑物质和黏土物质多以机械方式在流水，海水，湖水，冰川，风力和重力等营力下被搬运。以风力或流水搬运为例，在运动过程中有三种不同的运动方式：悬浮，跳跃和滚动，取决于沉积物的大小，重量与搬运力的大小。沉积物在搬运过程中，由于相互碰撞和磨蚀，使沉积物原有的棱角逐渐消失，成为卵圆或滚圆形，碎块，颗粒圆滑的程度称磨圆度。碎屑物质搬运的距离越长，磨圆度越高。当搬运力逐渐减小时，被搬运的沉积物质先后沉积下来，大的比小的先沉积，球状比片状的先沉积，重的比轻的先沉积。
（2）化学搬运。
母岩风化产物中的溶解物质有的呈胶体状态，有的呈真溶液搬运状态，这主要是与物质的溶解度有关。化学搬运物质组分溶解度按由小到大顺序排列为： $\mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{MnO} \rightarrow \mathrm{SiO}_{2} \rightarrow$ $\mathrm{P}_{2} \mathrm{O}_{5} \rightarrow \mathrm{CaCO}_{3} \rightarrow \mathrm{CaSO}_{4} \rightarrow \mathrm{NaCl} \rightarrow \mathrm{MgCl}_{2}$ 。其中 $\mathrm{Al}, ~ \mathrm{Mn}, ~ \mathrm{Si}$ 等的氧化物难溶于水，一般呈胶体溶液被搬运，而 $\mathrm{Ca}, ~ \mathrm{Mg}, ~ \mathrm{Na}$ 等物质由于溶解度大，故成真溶液被搬运。带不同电荷的胶体相互混合，电解质的加人及胶体溶液的浓缩等原因，都可以引起胶体物质的凝聚和沉淀。
（3）生物搬运。
随着地质历史的发展，生物在沉积岩形成过程中的意义越来越大，它通过自己的生命活动，直接或间接地对化学元素，有机或无机的各种成矿物质进行分解与化合，分散与聚集以及迁移等作用，并在多种适宜的水体中沉淀，形成岩石和矿床。

3．成岩作用

沉积物被埋置以后，直至固结为岩石以前所发生的作用称为沉积物的成岩作用。归纳起来，沉积物在成岩阶段的变化有以下几个方面：
（1）压固脱水作用。沉积物不断沉积，厚度逐渐加大。先沉积在下面的沉积物，承受着上覆越来越厚的新沉积物及水体的巨大压力，使下部沉积物孔陌减小，水分排出，密度增大，最后形成致密坚硬的岩石，称为压固脱水作用。
（2）胶结作用。各种松散的碎屑沉积物被不同的胶结物胶结，形成坚固完整岩石的作用称为胶结作用。最常见的胶结物有硅质，钙质，铁质和泥质。
（3）重新结晶作用。非晶质胶体溶液脱水转化为结晶物质，微小晶体在一定条件下能长成粗大晶体。这两种现象都可称为重新结晶作用，从而形成隐晶或细晶的沉积岩。
（4）新矿物的生成。沉积物在向沉积岩的转化过程中，除了体积，密度上的变化外，同时还生成与环境相适应的稳定矿物，例如方解石，燧石，白云石，黏土矿物等新的沉积岩矿物。

1．3．2．3 沉积岩的结构与构造

1．沉积岩的结构

沉积岩的结构是指沉积岩各个组成部分的颗粒形态，大小和联结形式。按照组成物质，颗粒大小及形态特征，沉积岩的结构分为以下四种：
（1）碎屑结构：是指岩石中有 50% 以上的碎屑颗粒被胶结物所胶结的结构，具此种结构的岩石属于碎屑岩。碎屑岩主要由碎屑颗粒和胶结物两部分组成，是沉积岩所特有的结构。按照主要碎屑颗粒的大小，碎屑结构可分为：砾状结构（ $>2.0 \mathrm{~mm}$ ），砂状结构 $(2.0 \sim 0.05 \mathrm{~mm})$ 和

粉砂状结构（ $0.05 \sim 0.005 \mathrm{~mm}$ ）。
（2）泥质结构：是黏土岩特有的结构，一般由颗粒粒径小于 0.005 mm 的黏土矿物颗粒组成，其特点是岩石中黏土物质占 50% 以上，由于混有不同含量的粉细砂，故存在一系列过渡型结构。
（3）化学结构：是化学岩特有的结构。由化学沉淀和胶体重结晶所形成的结构，又可分为鲕状，结核状，纤维状，致密块状和粒状结构等，其特点是岩石中溶解物质占 50% 以上，由于混有不同含量的泥质等，故也存在一系列过渡型结构。
（4）生物化学结构：岩石中含有生物遗体或碎片所组成的结构，如珊瑚结构，介壳结构等，常见于石灰岩，硅质岩和磷质岩中。

2．沉积岩的构造
沉积岩的构造是指沉积岩各个组成部分的空间分布及其相互排列的方式，它是沉积岩的重要宏观特征之一。常见的沉积岩构造特征有：
（1）层理构造。
当沉积物在一个较大区域内，地质环境条件基本一致的情况下，连续不断沉积形成的单元岩层称为层。把分隔不同性质岩层的分界面叫层面（可以是平面，但大多是曲面）。上下岩层面之间的垂直距离，称为岩层的厚度。层面的形成标志着沉积作用的短暂停顿或间断，层面上往往分布有少量的黏土物质或白云母等碎片，构成岩体在强度上的软弱面，因而岩体容易沿层面䢃开。单元岩层按照其厚度可分为巨厚层（ $>1 \mathrm{~m}$ ），厚层（ $1 \sim 0.5 \mathrm{~m}$ ），中厚层（ $0.5 \sim 0.1 \mathrm{~m}$ ），，薄层（ $<0.1 \mathrm{~m}$ ）等。

层理是沉积岩在形成过程中，由于沉积环境的改变所引起的沉积物质的成分，颗粒大小，形状或颜色在垂直岩层方向上发生变化而显示出的成层现象。层理构造是沉积岩独有的构造类型，是沉积岩区别于岩浆岩和变质岩的最主要的标志。

层理的形态有以下几种类型：
（1）水平层理。呈细层状，平直且彼此平行，在静水中形成，主要见于颗粒比较细小的岩石中，见图1．15（a）。
（2）斜交层理。层理面向一个方向与层面斜交，这种斜交层理在河流及滨海三角洲沉积物中均可见到，主要是由单向水流所造成的，见图1．15（b）。
（3）波状层理。层理面波状起伏，其总方向与层面大致平行，见图1．15（c）。
有些岩层一端厚，另一端逐渐变薄以至消失，这种现象称为层的尖灭。若中间厚，向两端逐渐尖灭，则称为透镜体，见图1．15（d）。

（a）水平层理

（b）斜交层理

（c）波状层理

（d）透镜体及尖灭层

图 1.15 沉积岩层理形态示意图
（2）层面构造。
在沉积岩岩层层面（顶，底面）上往往保留有反映沉积岩形成时流体运动，自然条件变化

遗留下来的痕迹，称为层面构造。
（1）顶面构造。在沉积岩的顶面发育的层面构造有：波痕，雨痕，泥裂，雹痕，晶体印痕，虫痕，动物足迹等构造，它们可以帮助判断岩层层序。
（2）底面构造。主要发育有：底冲刷，槽模，沟模等。
（3）结核和化石。
（1）结核：指包裹在沉积岩中某些矿物集合体的团块，是一种化学成因的构造，其成分，结构，颜色等一般与围岩不同。如石灰岩中的燧石结核，黏土岩中的石膏结核及黄土中的钙质结核等。
（2）化石：指埋置在沉积岩中的各地质时期古生物的遗体和遗迹。它们虽保持着古生物的体态和构造，但它的有机质已被矿物质所替代。古生物化石是沉积岩独有的构造特征，是研究地史，生物进化的重要依据。

1．3．2．4 沉积岩分类及常见沉积岩的鉴定特征

1．沉积岩的分类
根据沉积岩的成因，物质成分和结构等特征，可将沉积岩分为三大类：碎屑岩类，黏土岩类，化学及生物化学岩类（表1．9）。

表1．9 沉积岩分类

岩 类			结 构	岩石分类名称	主要亚类及其物质组成		
碎 屑 岩 类	火 山 碎 屑 岩	碎	粒径＞ 100 mm	火山集块岩	主要由＞100 mm 熔岩碎块，火山灰等经压密胶结而成		
			粒径 100～2 mm	火山角砾岩	主要由 $2 \sim 100 \mathrm{~mm}$ 熔岩碎屑，晶屑，玻屑及其他碎屑混入物		
			粒径＜2 mm	火山凝灰岩	50% 以上粒径＜ 2 mm 的火山灰组成，其中由岩屑，晶屑，玻屑等细粒碎屑物		
	沉 积 碎 屑 岩	屑 结	砾状结构粒径＞2 mm	砾岩	角砾岩：由带棱角的角砾经胶结而成砾岩：由浑圆的砾石胶结而成		
		构	砂质结构粒径 2～ 0.05 mm	砂岩	$\begin{aligned} & \text { 石英砂岩: 石英含量 }>90 \%, ~ \text { 长石和岩屃 }<10 \% \\ & \text { 长石砂: 石英含量 }<75 \%, ~ \text { 长石 }>25 \%, \text { 岩屑 }<10 \% \\ & \text { 岩屑砂岩: 石英含量 }<75 \%, ~ \text { 长石 < }<10 \%, ~ \text { 岩屑 }>25 \% \end{aligned}$		
			粉砂质结构粒径 0.05 ～ 0.005 mm	粉砂岩	主要由石英，长石及黍土矿物组成		
黏土岩类		泥质结构粒径 $<0.005 \mathrm{~mm}$		泥岩	主要由黏土矿物组成		
		页岩	黏土质页岩：由黏土矿物组成炭质页岩：由黏土矿物及有机质组成				
化学及生物化学岩类				结晶结构及生物结构		石灰岩	石灰岩：方解石（ $>90 \%$ ），黏上矿物（ $<10 \%$ ） 泥灰岩：方解石（ $50 \% \sim 70 \%$ ），黏土矿物（ 25%～ 50% ）
		白云岩	白云石：（ $90 \% \sim 100 \%$ ），方解石（ $<10 \%$ ） 灰质白云石：白云石（ $50 \% \sim 75 \%$ ），方解石（ $25 \% \sim$ 50\％）				

（1）碎屑岩类。
碎屑岩按照成因又分为火山碎屑岩和沉积碎屑岩两大类。
（1）火山碎屑岩。
由火山喷发的碎屑物质在地表经过短距离的搬运，沉积形成。依据火山碎屑岩中碎屑颗粒的大小又可分为火山集块岩（由粒径＞ 100 mm 的粗火山碎屑物质组成），火山角砾岩（由粒径为 $100 \sim 2 \mathrm{~mm}$ 的熔岩角砾组成）和火山凝灰岩（由粒径 $<2 \mathrm{~mm}$ 火山灰及细碎屑组成）。其中凝灰岩是很好的建筑材料，还可作为水泥的原料。
（2）沉积碎屑岩。
沉积碎屑岩是由先前形成的岩石风化碎屑产物经过搬运，沉积，固结所形成的岩石。碎屑岩由碎屑，杂质和胶结物三部分组成。碎屑是指碎屑岩中的岩石碎屑；杂质是指充填在碎屑颗粒之间细小的粒状物质，其粒径一般小于 0.03 mm ；胶结物是指碎屑岩中黏结碎屑颗粒的物质。沉积碎屑岩按照碎屑颗粒的大小可分为砾岩（角砾岩），砂岩和粉砂岩。碎屑岩的名称一般前面为胶结物成分，后面是碎屑的大小和形状，如硅质粗砂岩，铁质细砂岩。

碎屑岩类中的胶结物的胶结方式和成分，对其工程性质有重要影响，其中胶结方式有基底式胶结，孔隙式胶结和接触式胶结三种，见图1．16。

基底式胶结 胶结物含量较多，碎屑彼此不相连。这种胶结方式胶结紧密，岩石强度由胶结物成分控制，硅质最强，铁质，钙质次之，碳质较弱，泥质最差。

孔隙式胶结 碎屑颗粒紧密相接，胶结物充填于粒间孔隙中。
接触式胶结 只在碎屑颗粒的彼此接触处才有胶结物，故胶结物数量很少。这种胶结方式孔隙度大，强度低，透水性强。

图1．16 碎屑岩的胶结类型
（2）黏土岩类。
黏土岩主要是由粒径小于 0.005 mm 颗粒组成，并含有大量黏土矿物的岩石。一般黏土岩吸水性强，浸水后强度显著降低，抗滑稳定性差，具有可塑性，吸水性和膨胀性。主要的黏土岩有两种，即页岩和泥岩。
（3）化学岩和生物化学岩。
化学岩和生物化学岩是各种母岩经过强烈的化学风化所形成的真溶液或胶体溶液，搬运至静水盆地中沉淀而成的，主要由碳酸盐类组成，肉眼鉴定时主要是利用其化学成分的特殊性，如方解石遇稀盐酸剧烈起泡。

常见的化学岩和生物化学岩的结构有：致密结构，结晶结构，鳁状结构，生物结构等。致密结构用肉眼难以辨认矿物颗粒的粗细；结晶结构多在岩石表面有闪闪发亮的矿物颗粒；鲕状

结构是在岩石表面上有直径小于 2 mm 的似鱼子一样的结构，如鲕状灰岩；生物结构岩石中有大量的生物化石，如珊瑚灰岩，介壳灰岩等。

2．常见沉积岩的鉴定特征
（1）角砾岩和砾岩。由 50% 以上大于 2 mm 的粗大碎屑颗粒胶结而成的岩石称为砾岩或角砾岩。碎屑颗粒为圆状和次圆状称为砾岩；若砾石为棱角状或次棱角状，则称为角砾岩。两者主要由岩屑组成，矿物成分多为石英，燧石，胶结物有硅质（成分为 SiO_{2} ），泥质（成分为黏土矿物），钙质（成分为 $\mathrm{Ca}, ~ \mathrm{Mg}$ 的碳酸盐）或其他化学沉淀物。胶结物的成分对砾岩的物理力学性质影响很大。如胶结物为硅质或铁质的基底式胶结的砾岩，抗压强度很高，是良好的建筑物地基。因此鉴定时要对碎屑的大小，形状，成分，数量，胶结物的性质及胶结方式进行研究。
（2）砂岩。按粒径大小，砂岩可分为粗（砂粒直径在 $2 \sim 0.5 \mathrm{~mm}$ ），中（砂粒直径在 $0.5 \sim$ 0.1 mm ），细（砂粒直径在 $0.1 \sim 0.05 \mathrm{~mm}$ ），粉（砂粒直径在 $0.05 \sim 0.005 \mathrm{~mm}$ ）四种。由于天然沉积的砂粒，其粒径虽有一定的分选性，但仍然难免大小粒径混杂在一起。例如，中砂粒径范围是 $0.5 \sim 0.25 \mathrm{~mm}$ ，但只要在该砂岩中，中砂含量超过全部砂粒的 50% 以上者即可定为中砂岩。
（3）黏土岩类。又称泥质岩类，包括黏土，页岩和泥岩三种主要类型。
黏土为松散的土状岩石，其黏土颗粒含量在 50% 以上。可根据其黏粒含量不同分为亚黏土 （黏粒含量 $10 \% \sim 30 \%$ ），亚砂土（黏粒含量 $3 \% \sim 10 \%$ ）及砂土（黏粒含量小于 3% ）等。黏土根据其中所含主要矿物成分的不同可分为高岭石黏土，蒙脱石黏土和伊利石黏土。

页岩是由松散黏土经硬结成岩作用而成。为黏土岩的一种构造变种，成分复杂，除了各种黏土矿物外，还有少量石英，绢云母，绿泥石，长石等。页岩的颜色有多种，一般呈灰色，棕色，红色，绿色和黑色等。页岩层理清晰，其层理构造又称为页理构造。页岩能沿层理分成薄片，其结构较泥岩紧密，风化后多呈碎片状。

泥岩的成分与页岩相似，但层理不发育，具块状构造。泥岩则层理不清晰，结构疏松，风化后多呈碎块状。
（4）石灰岩。简称灰岩，主要化学成分为碳酸钙，主要矿物组成为方解石，其次含少量的白云石等矿物，石灰岩一般遇稀盐酸剧烈起泡。含硅质，白云质和纯灰岩的岩石强度高，含泥质，炭质和贝壳的灰岩强度低。石灰岩具有可溶性，易被地下水溶蚀，形成宽大的裂隙和溶洞，是地下水的良好通道，对工程建筑物地基渗漏和稳定性影响较大。
（5）白云岩。主要矿物为白云石，含少量方解石，石膏，菱镁矿及黏土等。白云岩一般比石灰岩颜色稍浅，多为灰白色，白云岩与石灰岩在外貌上很相似，难以区分，但滴稀盐酸不起泡或微弱起泡，滴镁试剂颜色由紫变蓝，在野外露头上常以许多纵横交叉似刀砍状溶沟为其特征。
（6）泥灰岩。主要矿物有方解石和黏土矿物两种。泥灰岩是碳酸盐与黏土岩之间的过渡类型，其中黏土含量为 $25 \% \sim 50 \%$ 。若黏土含量为 $5 \% \sim 25 \%$ ，则称之为泥质灰岩。颜色有浅灰，浅黄，浅红等；滴稀盐酸起泡后，表面残留下黏土物质。

1．3．3 变质岩

原岩（岩浆岩，沉积岩，早期的变质岩）在地壳中受到高温，高压及化学成分加入的影响，在固体状态下发生矿物成分及结构，构造变化后形成的新的岩石称为变质岩。由岩浆岩形成的变质岩为正变质岩，由沉积岩形成的变质岩为副变质岩。

变质岩分布广泛，从时代上看，差不多各个时代都有，尤其是前寒武纪以前的太古代和元古代岩石，绝大多数为变质岩，因此在地质工作中经常遇到。变质岩中含有丰富的金属矿和非

金属矿，例如全世界铁矿储量中 70% 储藏于前寒武纪古老变质岩中。在工程上，变质岩分布地区往往是工程地质条件恶劣的地段，需要认真研究与变质岩有关的工程地质问题。

1．3．3．1 变质作用的影响因素及类型

1．影响变质作用的因素

影响变质作用的主要因素有温度，压力及化学活泼性流体。
（1）温度。温度的变化是引起质变的最主要，最积极的因素，大多数变质作用是在温度升高的情况下进行的，其原因主要体现在以下几个方面：首先，温度升高引起岩石重结晶作用的发生和矿物多型变体的形成。在高温时岩石内部的质点活动能力增强，导致质点重新排列组合，使非晶质转变为结晶质，晶粒由小变大，由细变粗。例如，高岭石在热力（温度）作用下，形成红柱石和石英的矿物组合，其化学反应式为：

$$
\mathrm{Al}_{4}\left[\mathrm{Si}_{4} \mathrm{O}_{10}\right](\mathrm{OH})_{8} \underset{\text { 放热 }}{\stackrel{\text { 热热 }}{\leftrightarrows}} 2 \mathrm{Al}_{2}\left[\mathrm{SiO}_{4}\right] \mathrm{O}+2 \mathrm{SiO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

高岭石 红柱石 石英

其次，温度变化会使岩石中的矿物发生变质反应，各种组分重新组合形成新矿物；再次，温度的升高为变质反应提供了能量；最后，温度的升高促进了扩散作用的进行，形成变质岩中的许多大的变晶。
（2）压力。包括由上覆岩层的负荷重量产生的静压力，侵入于岩体空隙中的流体所形成的压力以及地壳运动或岩浆活动产生的定向压力。引起变质作用的压力最大可达 $1 \times 10^{9} \mathrm{~Pa}$ 。

在静压力的长期作用下，岩石的孔隙减小，使岩石变得更加致密坚硬，塑性增强，密度增大，形成石榴子石等密度较大的变质矿物。静压力还导致化学反应速度的加快或减缓，引起岩石结构的改变。在构造运动或岩浆活动所引起的侧向挤压力等定向压力的作用下，使岩石产生节理，裂隙或形成䢃理构造及各种破碎构造，有利于片状，柱状矿物定向生长，促进新的矿物组合和发生重结晶作用。
（3）化学活泼性流体。通常是指气态或液态的水溶液。在水溶液中经常会含有不同数量的 CO_{2} ，硼酸，盐酸，氢氟酸和其他挥发成分，这些物质大大增强了水溶液的化学活泼性。它们与周围原岩中的矿物接触，发生化学反应或分解作用，形成新矿物，从而改变了原岩中的矿物组分。

2．变质作用的类型
在变质过程中，上述各因素不是孤立的，通常都是同时存在，互相配合，互相制约并随着时间的推移而发生变化的。根据变质作用的主要因素，变质作用可划分为以下几种类型。
（1）区域变质作用。在广大面积内所发生的，作用因素复杂的一种变质作用。由温度，均向压力，定向压力和化学活动性的流体的综合作用所造成。其变质范围可达数万平方千米，前寒武纪的古老地块几乎都是由变质岩构成的；有时呈狭长带状分布，长可达数百，数千千米，宽可达数十，数百千米，如许多褶皱山脉（天山，祁连山，昆仑山，秦岭等）均有和其走向一致的变质岩带分布。
（2）热力变质作用。围岩受岩浆侵入体的高温影响产生的变质作用称为热力变质作用，又称为接触变质作用，主要表现为原岩成分的重结晶。接触变质的主要作用是岩石受热后发生矿物的重结晶，脱水，脱碳以及物质的重新组合，形成新的矿物与变晶结构，从而改变了岩石的结构和性质。如纯质的石灰岩经过接触变质后形成大理岩；硅质灰岩变成硅质石灰岩，含镁质灰岩变成蛇纹石大理岩等。但由于没有明显的交代作用，岩石变质前后的化学成分基本没有变化。
（3）交代变质作用。化学性质活泼并含有挥发组分的高热流体与围岩进行交代而使岩石发生变质的一种作用，称为交代变质作用。交代过程是在有气液参与的固体状态下进行的，新矿物与原有矿物是等体积交换的。这种变质作用，不仅导致岩石矿物成分和结构的变化，而且还引起化学成分的变化。特别是富含挥发组分的中酸性侵人体与碳酸盐岩接触，常引起强烈的交代作用，形成移卡岩。
（4）动力变质作用。在地壳构造运动所产生的定向压力作用下，岩石所发生的变质作用称为动力变质作用，其变质因素以机械能及其转变的热能为主。其主要特征是使原岩结构和构造特征发生改变，原岩被挤压破碎，变形并有重结晶现象，常沿断裂带呈条带分布，可形成断层角砾岩，糜棱岩，压碎岩，伴有叶蜡石，蛇纹石，绿泥石等矿物。而这些岩石和矿物又是判断断裂带的重要标志。

1．3．3．2 变质岩的矿物成分

变质岩的形成过程决定了其化学成分与原岩之间，既有继承性，又具有多样性。变质岩的矿物成分既决定于原岩的化学成分，也和形成时的物理化学条件密切相关。原岩的化学成分是形成变质岩矿物的物质基础，而物理化学条件则是变质岩出现什么矿物或矿物组合的决定条件。在一般情况下，变质岩的矿物成分较岩浆岩和沉积岩更为复杂多样。

变质岩的特征矿物有红柱石，蓝晶石，矽线石，十字石，阳起石，透闪石，滑石，叶蜡石，蛇纹石，绿泥石，方柱石，硅灰石，符山石，石榴子石，石墨等，这些矿物只在变质岩中有分布，如果这些矿物在岩石中较多出现，反映了原岩已经变质，应归属变质岩类。

变质岩中广泛发育纤维状，鳞片状，长柱状，针状的矿物，常呈有规律地定向排列。变质岩中含 OH^{-}的矿物与岩浆岩相比更为发育；变质岩中的石英，长石等矿物常具波状及带状消光，裂纹也较为发育。

1．3．3．3 变质岩的结构与构造

1．变质岩的结构

变质岩的结构是指岩石组分的形状，大小和相互关系等所反映的岩石构成方式。它着重于矿物个体的性质和特征。根据成因，可将变质岩结构分为三大类：
（1）压碎结构。当压力超过岩石或矿物的弹性和强度极限时，矿物发生弯曲，破裂粒化和泥化的作用，甚至产生韧性变形，形成各种碎裂结构。根据破碎程度由低到高又可分为碎裂结构，碎斑结构和糜棱结构等三种亚类。
（2）变晶结构。岩石在固体状态下，原来的物质发生重结晶作用而形成的结构。这种结构的变质岩变质程度较深，岩石中矿物重新结晶的程度较高，基本上为显晶质，是多数变质岩的结构特征，见图1．17。
（3）变余结构。原岩在变质作用过程中由于重结晶作用和变质反应进行得不彻底，原岩中的一些结构特征被部分地保留下来，这样形成的结构就称为变余结构。变余结构的变质岩变质程度较浅，岩石变质轻微，仍保留原岩中的某些结构特征。如变余花岗结构，变余斑状结构等。

2．变质岩的构造

变质岩的构造是指由岩石组分在空间上的排列和分布所反映的岩石构成方式，着重于矿物集合体的空间分布特征。常见的变质岩的构造有以下几种类型。
（1）片理构造。岩石中片状，板状和柱状的矿物在定向压力作用下重结晶，垂直于压力方

向成平行排列形成的。顺着平行排列的面，可以把岩石䢃成一片一片和小型构造形态，叫作片理。片理构造是变质岩所特有的构造，也是区别于岩浆岩与沉积岩的重要构造特征。根据形态的不同片理构造又可分为以下几种：
（1）板状构造。片理厚，片理面平直，重结晶作用不明显，颗粒细密，光泽微弱，沿片理面裂开则呈厚度一致的板状，如板岩。
（2）千枚状构造。片理薄，片理面较平直，颗粒细密，沿片理面有绢云母出现，容易裂开呈千枚状，表面呈丝绢光泽，如千枚岩。
（3）片状构造。重结晶作用明显，片状，板状或柱状矿物沿片理面富集，平行排列，片理很薄，沿片理面很容易剥开呈不规则的薄片，光泽很强，如云母片岩等。
（4）片麻状构造。岩石中深色矿物（黑云母，角闪石等）和浅色矿物（长石，石英等）相间断续平行排列呈条带状分布。片理很不规则，沿片理面不易裂开，如片麻岩，见图1．18。

（红柱石角岩中红柱石集合体变质后形成菊花状）
图1．17 变质岩中的变晶结构

（上图为手标本，下图为显微镜素描图）
图1．18 片麻岩中的片麻状构造
（5）眼球状构造。眼球状构造是指在定向排列的片状及长柱状矿物中，局部夹有刚性较大的矿物（如石英，长石等）块体呈凸镜状或扁豆状，形似眼球，故名眼球状构造。
（2）条带状构造。条带状构造是指岩石中的矿物成分，颜色，颗粒或其他特征不同的组分，形成彼此相间，近于平行排列的条带，故称条带状构造。

条带状和眼球状构造，是在变质程度很深的变质岩中，或在混合岩化作用下形成的混合岩中常见的一种构造形态。
（3）块状构造。矿物在岩石中均匀分布，无定向排列现象或定向排列现象不明显，这种较均匀的块体称为块状构造。

1．3．3．4 变质岩分类及常见变质岩的鉴定特征

1．变质岩分类

变质岩与其他岩石（岩浆岩，沉积岩）最明显的区别是构造特征及特有的矿物成分。因此变质岩的分类主要考虑构造特征来划分类型。根据变质岩的结构，构造和矿物成分，常见变质岩的分类如表1．10所示。

表1．10 变质岩分类

变质作用	岩石名称	结构	构造		主要矿物成分
区域变质作用 （由板岩至片麻岩变质程度逐渐加深）	板岩	变余	片理构造	板状	黏土矿物，云母，绿泥石，石英，长石等
	千枚岩	变晶		千枚状	绢云母，石英，长石，绿泥石，方解石等
	片岩	变晶		片状	云母，角闪石，绿泥石，石墨，滑石等
	片麻岩	变晶		片麻状	石英，长石，云母，角闪石，辉石等
热力变质或区域变质	大理岩	变晶	非片理构造	块状	方解石，白云石
	石英岩	变晶		块状	石英
交代变质	云英岩	变晶		块状	白云母，石英
	蛇纹岩	隐晶		块状	蛇纹石
动力变质	断层角砾岩	压碎		块状	岩石，矿物碎屑
	糜棱岩	糜棱		块状	石英，长石，绿泥石，绢云母

2．常见变质岩的鉴定特征
（1）板岩。由黏土岩，粉砂岩或中酸性凝灰岩经轻微变质而成的浅变质岩。板岩的变质程度很低，原岩矿物基本上没有重结晶，故其变余结构明显，有时部分有重结晶现象而呈显微鳞片状变晶结构，具明显板状构造。板岩外表呈致密隐晶质状。板面上有时能看到微细的云母及绿泥石等新生矿物。板岩可沿板理剥成薄板，作为房瓦，地面板等建筑材料。
（2）千枚岩。大多由黏土岩变质而成。矿物成分主要为石英，绢云母，绿泥石等。结晶程度比片岩差，晶粒极细，肉眼不能直接辨别，外表常呈黄绿，褐红，灰黑等色。由于含有较多的绢云母，片理面常有微弱的丝绢光泽。千枚岩的质地松软，强度低，抗风化能力差，容易风化剥落，沿片理倾向容易产生塌落。
（3）片岩。具变晶结构，片状构造。矿物成分主要是一些片状矿物，如云母，绿泥石，滑石等，此外尚含有少许石榴子石等变质矿物。片岩的进一步分类和命名是根据矿物成分划分的，如云母片岩，绿泥石片岩，滑石片岩等。片岩的片理一般比较发育，片状矿物含量高，强度低，抗风化能力差，极易风化剥落，岩体也易沿片理倾向塌落。
（4）片麻岩类。具变晶或变余结构，典型的片麻状构造，因发生重结晶，一般晶粒粗大，肉眼可以分辨。片麻岩可以由岩浆岩变质而成，也可由沉积岩变质形成。主要矿物为石英和长石，其次为云母，角闪石，辉石等，此外有时含有少许石榴子石等变质矿物。根据矿物成分，片麻岩可进一步分类和命名，如角闪石片麻岩，斜长石片麻岩等。片麻岩强度较高，如果云母含量增多，强度相应降低。因具片麻状构造，故较易风化。
（5）大理岩。由石灰岩或白云岩经重结晶变质作用形成，等粒变晶结构，块状构造。主要矿物成分为方解石，遇稀盐酸剧烈起泡。大理岩常呈白色，浅红色，淡绿色，深灰色以及其他各种颜色，常因含有其他带色杂质而呈现出美丽的花纹。大理岩强度中等，易于开采加工，色泽美丽，是一种很好的建筑装饰石料。
（6）石英岩。石英含量大于 85% 的变质岩石，由石英砂岩或硅质岩经热变质作用而形成。结构和构造与大理岩相似。一般由较纯的石英砂岩变质而成，常呈白色，因含杂质，可出现灰白色，灰色，黄褐色或浅紫红色。石英岩强度很高，抵抗风化的能力很强，是良好的建筑石料，但硬度很高，开采加工相当困难。
（7）构造角砾岩。构造角砾岩常是断层破碎带的产物，主要由地壳构造运动（或动力变质作用）中被挤碾成角砾状的碎块，经过胶结以后形成的。胶结物一般为细颗粒岩屑，有时由溶液中的沉淀物胶结而成，具有角砾状或碎裂结构，块状构造。
（8）糜棱岩。糜棱岩也是断层破碎带中的产物，在持久，强大的定向压扭应力作用下，被研磨成粉状岩屑（一般小于 0.5 mm ），经高压结合而成，具有典型的糜棱结构。糜棱岩中常见的矿物除石英，长石外，还有绢云母，绿泥石，滑石等新生变质矿物。

构造角砾岩和糜棱岩一般分布在区域地质构造复杂的断裂带中，例如云南哀牢山红河断裂带中，糜棱岩宽度达 1 km 以上。由于其工程地质条件恶劣，往往给建筑物的施工带来困难。

1．3．4 三大岩石的比较及相互转化

综上所述，上述三大岩类的主要特征及对比如表1．11所示。
表1．11 三大岩石区分

地质特征	岩浆岩	沉积岩	变质岩
矿物成分	均为原生矿物，成分复杂但较为稳定，常见的有：石英，长石，角闪石，辉石，橄榄石和云母等	次生矿物占相当数量，矿物成分简单但多不固定，常见的有：石英，正长石，白云母，方解石白云石，高岭石，绿泥石和海绿石等	除具有原岩的矿物成分外，尚有典型的变质矿物，如石榴子石，透辉石，矽线石，蓝晶石，十字石，红柱石，阳起石，符山石等
结构	以粒状，板状结构为特征	以碎屑，泥质及生物碎屑结构为特征	以变晶，变余，压碎结构为特征
构造	具流纹，气孔及块状构造	多具层理构造	多具片理构造
产状	多具侵入体出现，少数喷出呈不规则形状	层状或大透镜状	随原岩的产状而定
分布	以花岗岩，玄武岩分布最广	黏土岩分布最广，次为砂岩，石灰岩	以区域变质岩分布最广

三大类岩石都是在特定的地质条件下形成的，但是它们在成因上又是紧密联系的，在一定的条件下又可相互转化。如图1．19所示，出露于地表的任何岩石（岩浆岩，沉积岩，变质岩），在大气圈，水圈和生物圈的共同作用下，经风化，剥蚀，搬运，沉积，固结形成新的沉积岩。任何岩石在构造作用下进人地壳深处，在温度不太高的情况下（一般小于 $800{ }^{\circ} \mathrm{C}$ ），岩石将发生局部熔融，形成新的变质岩。当地壳深处温度升高到一定程度（一般大于 $800{ }^{\circ} \mathrm{C}$ ），岩石将发生局部熔融，形成岩浆。岩浆的侵入和喷出活动，形成各种岩浆岩。这些转化是复杂多变的，从而形成了千姿百态的岩石和丰富多样的地质现象。

图 1.19 三大岩石相互转化示意图

1．3．5 风化作用

1．3．5．1 风化作用类型

地壳表层的岩石在太阳能，空气，水溶液及生物的作用和影响下，发生机械破碎和化学变化的作用，称为风化作用。根据不同的自然因素对岩石作用方式的不同，可以将风化作用进一步分为物理风化作用，化学风化作用和生物风化作用。

1．物理风化作用
物理风化作用是指地表岩石在自然因素以及盐类的结晶作用下产生机械破碎，岩石的化学及矿物成分无明显改变的风化作用。它使岩石变得松散破碎，孔隙比和表面积增大，如图1．20所示。引起岩石物理风化作用的因素主要是温度变化和岩石裂隙中水分的冻结。
（1）温度变化。温度变化是引起岩石物理风化作用最主要的因素。在大陆内部尤其是沙漠地区，昼夜或季节之间温度变化很大，白天地表温度可高达 $60 \sim 70^{\circ} \mathrm{C}$ ，而夜晚可降至 $0^{\circ} \mathrm{C}$ 以下，从而使矿物，岩石产生显著的热

图1．20 风化岩石胀冷缩现象，如图1．21所示。一方面，当白天阳光照射时，岩石表层温度快速升高而发生膨胀，由于岩石的导热性很差，传热缓慢，这时其内部尚未受热，并不能相应膨胀，结果在内外层之间产生与表面方向垂直的张力；夜间岩石表面因快速散热变冷，体积收缩，而岩石内部这时刚受到由岩石表面传来的热的影响，体积正在膨胀，结果使岩石的外层受到张力。在上述张力的反复作用下，便产生平行于岩石表面的裂缝及垂直于岩石表面的裂缝，久而久之使岩石碎裂开来。另一方面，岩石由多种矿物组成，各个矿物的膨胀系数不同，当温度变化时就发生差异性膨胀和收缩，从而破坏矿物之间的结合能

力，促使岩石的碎裂；此外，岩石因反复增温，其组成质点的热运动增强，也会削弱它们之间的联系能力，有助于岩石的碎裂。

图1．21 气温变化引起岩石膨胀收缩的崩解过程示意图
（2）冰䢃作用。水的冻结在严寒地区和高山接近雪线的地区经常发生。当气温到 $0^{\circ} \mathrm{C}$ 或以下时，在岩石裂隙中的水，就产生冰冻现象。水由液态变成固态时，体积膨胀约 9% ，对围岩裂隙两壁产生很大的膨胀压力，起到＂楔子＂的作用，称为＂冰䢃＂。当冰融化后，水沿着扩大了的裂隙向深部渗人，软化或溶蚀岩体，如果冻融反复进行就必然使岩石的空隙逐步增多，扩大，以致岩石崩裂，这种过程称为冰䢃作用，如图1．22所示。
（3）盐类结晶的撑裂作用。岩石中含有的潮解性盐类，在夜间因吸收大气中的水分而潮解，变成溶液渗人岩石内部，并将沿途所遇到的盐类溶解；白天在烈日照晒下，水分蒸发，盐类又结晶出来，结晶时对周围岩石产生压力。这种作用反复进行，就能使岩石不断撑裂，如图1．23所示。

图1．22 冰䢃作用

图1．23 盐类结晶的撑裂作用
（4）释荷作用。岩石从地下深处变化到地表条件时，由于上覆静压力减小而产生张应力，从而引起岩石的体积膨胀，出现了平行于地面（岩石表面）的膨胀裂隙。形成这种裂隙构造的作用称为释荷作用。在温度变化，水和生物等因素的共同作用下，便形成平行岩石表面的层层脱落现象，称为鳞片剥落或球状风化。这种现象经常出现在不成层的花岗岩类岩石或厚层的砂岩中，如图1．24所示。

2．化学风化作用
地表岩石受水，氧及二氧化碳的作用而发生化学成分的变化，并产生新矿物的作用，称为

化学风化作用。其特点是不仅破碎了岩石，而且改变了其化学成分，产生了新的矿物，直到适应新的化学环境为止。化学风化作用有溶解作用，水化作用，水解作用，氧化作用和碳酸化作用等。
（1）溶解作用。任何矿物都能溶解于水，只是溶解度大小不同而已。溶解作用的结果使溶解物随水流失，难溶物残留原地，岩石孔隙增加，整个岩石的密实度降低，直至岩石完全解体。典型的例子是石灰岩的溶解作用，形成岩溶现象。
（2）水化作用。有些矿物能吸收一定量的水参加到矿物晶格中，形成含水分子的矿物，称为水化作用。如硬石膏水化成石膏后，体积膨胀约

图1．24 释荷作用造成的岩石表面的脱落现象 59% ，从而对周围岩石产生压力，促使岩石破坏：

$$
\mathrm{CaSO}_{4}(\text { 硬石膏 })+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} \text { (石膏) }
$$

另外，水化作用改变了原有结构，溶解度变大，而硬度低于原来无水矿物，因而也加快了岩石的风化速度。
（3）氧化作用。氧化作用在有水存在时发生，常与水化作用相伴进行。在自然界中低氧化合物，硫化物和有机化合物最易遭受氧化作用。尤其是低价铁，常被氧化成高价铁。黄铁矿（ FeS_{2} ）在风化过程中会析出游离的硫酸，这种硫酸具有很强的腐蚀作用，能溶蚀岩石中某些矿物，形成一些洞穴，致使岩石破坏。黄铁矿经氧化后转变成褐铁矿，其反应式如下：

$$
\left.4 \mathrm{FeS}_{2}(\text { 黄铁矿 })+15 \mathrm{O}_{2}+11 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Fe}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O} \text { (褐铁矿 }\right)+8 \mathrm{H}_{2} \mathrm{SO}_{4}
$$

绝大部分岩石的矿物中都含有低价铁，它在地表条件下易氧化成褐铁矿，从而导致岩石的破坏。地表岩石风化后多呈黄褐色就是因为风化产物中含有褐铁矿的缘故。
（4）碳酸化作用。水中的 CO_{2} 从矿物中夺取盐基，从而破坏原岩中的矿物，生成新的碳酸盐，使原有矿物分解，这种变化称为碳酸化作用。如：

$$
\begin{gathered}
2 \mathrm{KAlSi}_{3} \mathrm{O}_{8}+\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{~K}_{2} \mathrm{CO}_{3}+\mathrm{Al}_{2} \mathrm{Si}_{2} \mathrm{O}_{5}(\mathrm{OH})_{4}+4 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O} \\
\text { 正长石 } \\
\text { 高岭石 }
\end{gathered}
$$

在这一反应式中， $\mathrm{K}_{2} \mathrm{CO}_{3}$ 和 SiO_{2} 均被水带走，高岭石则残留在原地。斜长石也能产生碳酸盐化作用。由于长石是岩浆岩中最主要的造岩矿物，它们都易于经过碳酸化和水解作用转变成黏土矿物，因而坚硬的岩浆岩很容易遭受风化作用而破坏。

3．生物风化作用

生物在其生长和分解过程中，直接或间接地对岩石，矿物所起的物理和化学的风化作用称为生物风化作用。
（1）生物物理风化作用。生物的生命活动促使岩石产生机械破碎。例如：生长在岩石裂隙中的植物逐渐长大，它的根须逐渐变粗，变大和增多，就像楔子一样对裂隙壁施加强大的作用 （拉力），䢃裂岩石，称为根䢃作用。

动物对岩石也能产生机械破坏。一些穴居的动物如地鼠，蚯蚓，蚂蚁等，可以穿石翻土，破坏岩石的完整性，人类的生产活动对岩石的破坏作用就更加明显。
（2）生物化学风化作用。生物的新陈代谢，遗体及其产生的有机酸，碳酸，硝酸等的腐蚀

作用，使岩石矿物分解和风化，造成岩石成分改变，性质软化和疏松。生物及微生物的化学风化作用是很强烈的。据统计，每克土壤中可含几百万个微生物，它们不停地制造，分泌有机酸，碳酸，硝酸等各种酸类物质，从而强烈地破坏岩石。

岩石的各类风化作用彼此相互紧密联系。物理风化作用加大了岩石的孔隙，岩石崩解为较小的颗粒，使表面积增加，加大了岩石的渗透性，有利于水分，气体和微生物等侵人，更有利于化学风化作用的进行。因此，物理风化是化学风化的前驱和必要条件，而化学风化是物理风化的继续和深入。物理风化和化学风化在自然界往往是相伴而生，同时进行，相互影响，相互促进的，它们共同破坏着岩石。风化作用是一个复杂的，统一的过程，在不同地区，由于自然条件的差异，使得风化作用的类型又有主次之分。如在西北干吕区，水源贫乏，气温变化强烈，以物理风化为主，其结果是在陡坡，山麓和沟谷中产生大量的危石，碎石和岩屑，从而为滑坡，崩坍，落石，泥石流的形成创造了物质条件；东南沿海地区，雨水充沛，潮湿炎热，则以化学风化为主，其结果是形成了许多新的矿物。

1．3．5．2 影响岩石风化的因素

影响岩石风化的因素主要有岩石的成因，岩石性质，气候和地形等因素。
1．成 因
风化作用实质上是由于岩石生成时的环境条件与目前所处的环境条件的差异造成的。一般来说，岩石生成得越早，其生成条件与地表风化带的自然条件相差越大，则对风化作用的抵抗能力就越低；反之生成得越迟，则抗风化稳定性越高。一般情况下沉积岩比岩浆岩和变质岩的抗风化能力强。

2．岩石性质

岩石性质包括矿物成分，结构和构造，是影响岩石风化作用的主要因素。
（1）矿物成分。绝大多数岩石是复矿物的集合体，因此岩石的抗风化能力就取决于组成岩石的矿物成分的化学稳定性和矿物种类的多少。矿物在风化过程中的稳定性由大到小的顺序是：氧化物 $>$ 硅酸盐＞碳酸盐和硫化物，酸性斜长石 $>$ 基性斜长石，含铁镂硅酸盐矿物 $>$ 富铁镁硅酸盐矿物。按照矿物化学稳定性顺序，石英抗风化的能力最强；单矿岩的抗风化能力强于复矿岩；浅色矿物（如石英，正长石）抗风化能力强于深色矿物（如橄榄石，辉石，角闪石，黑云母等）。
（2）结构和构造。岩石中一般含有多种矿物，如花岗岩含有石英，长石和角闪石等矿物，它们的热膨胀系数不同，如在 $50^{\circ} \mathrm{C}$ 时，石英的热膨胀系数为 31×10^{-6} ，正长石为 17×10^{-6} ，角闪石为 28.4×10^{-6} 。当温度发生变化时，岩石内部的各种矿物就会发生不均匀的膨胀或收缩，这种差异可能出现在矿物颗粒之间，也可能出现在颗粒与胶结物之间。矿物颗粒小而均匀的岩石，由于膨胀和收缩的变化比较一致，所以比矿物颗粒大或颗粒大小不均匀的岩石，抗风化能力强；等粒结构比斑状结构耐风化，而隐晶质岩石最不易风化。

构造对岩石工程性质的影响，主要是由矿物成分在岩石中分布的不均匀性和岩石结构的不连续性所决定的。如在片理，层理等构造面上一些强度低，易风化的矿物沿着一定方向的排列，富集，都可使这些软弱面上的力学性质发生很大的变化，同时也由于这些构造的存在，使得岩石的工程性质具有各向异性的特点。因此从构造的特点分析，致密的块状岩石比具有各向异性的层理，片理状岩石耐风化，厚层岩石比薄层状岩石耐风化。

3．气 候
在气候所包括的各种要素中，对风化有重要影响的是气温（包括气温高低，温差幅度，变

化频率等），雨量和湿度。它们对风化营力的种类和强度，风化作用的性质，岩石风化的程度，深度和速度，以及风化产物的特点都具有不同程度的控制意义。此外，它们还通过对生物活动和地下水分布的制约，间接地对岩石的风化产生影响，因此在不同的气候区中各有其独特的风化特征。

4．地 貌

地貌条件对于风化作用的进程和风化产物的积存都起到重要的控制作用，因而它直接或间接地影响岩石的风化类型，速度以及风化壳的厚度。雪线以上一般都以物理风化为主；而海拔较低的地区，化学风化的作用则占有比较重要的地位。

地形坡度对于风化产物的积存条件有决定性的影响，在坡度较陡的微地貌单元上，风化产物易被剥蚀，即使在风化作用非常强烈的地区，也不可能有较厚的风化壳保留下来，风化营力就不断向岩石内部深入进行。河床和沟底部位，流水急剧冲刷，与陡坡有类似的条件；在坡度平缓的微地貌单元上，风化产物易于停积保存，由于上覆风化产物的逐渐加厚，阻碍着风化营力向岩石中深人，因而对新鲜岩石的侵袭逐渐减缓，达到一定程度之后，即近于停滞状态。岩石风化壳的厚度和特点决定于风化产物的生成速度和剥蚀速度两者的相对强弱。

1．3．5．3 岩石的风化程度与风化带

风化作用导致岩土的工程性质发生变化，改变了岩石的物理化学性质，其变化的情况随着风化程度的轻重而不同。如岩石的裂隙度，孔隙度，透水性，亲水性，胀缩性和可塑性等都随风化程度加深而增加，岩石的抗压和抗剪强度都随风化程度而降低，风化产物的不均匀性，产状和厚度的不规则性都随风化程度增加而增大。所以，岩石风化程度越强的地区，岩石的强度和稳定性降低，变形增加，工程建筑物的地基承载力越低，岩石的边坡越不稳定，直接影响建筑场地和工程建筑物的稳定性。由于地表岩石都遭受不同程度的风化，因此在工程建设前必须对岩石的风化程度，速度，深度和分布情况进行调查和研究，从而为工程建筑的设计和施工提供依据资料。

1．岩石风化程度分级

目前确定岩石风化程度的主要依据有：矿物颜色的变化，矿物成分的改变，岩石破碎程度和岩石强度降低等四方面的特征。
（1）矿物颜色的变化。岩石中矿物成分的风化首先反映到其颜色的改变上。未风化矿物的颜色都是新鲜的，光泽明显可见，风化越重颜色越暗淡，甚至改变颜色。野外观察时要注意岩石表面与内部颜色对比，要区别干燥和潮湿时颜色的差异。
（2）矿物成分的改变。要特别注意那些易于风化的矿物以及风化生成的新的次生矿物。风化越重，原有深色矿物和片状，针状矿物越少，次生黏土矿物，石膏及褐铁矿越多。
（3）岩石破碎程度。是岩石风化程度的重要标志之一。岩石风化破碎是由于大量风化裂隙造成的，因此要重点观测风化裂隙的长度，宽度，密度，形状及次生充填物质等。
（4）岩石强度。风化越重，岩石的力学性质越差，则其完整性，强度及坚硬程度就越低。野外观察时，可用手锤敲击，小刀刻划，用手折断等简易方法进行试验，必要时可采取岩样进行室内强度试验或野外原位试验。

根据上述四方面的变化，《岩土工程勘察规范》（GB 50021－2001）按岩石风化程度划分为 6 类（见表1．12）：未风化，微风化，中等风化，强风化，全风化和残积土。

表1．12 岩石按风化程度分级

风化程度	野外特征	风化程度参数指标	
		波速比 K_{V}	风化系数 K_{f}
未风化	岩质新鲜，偶见风化痕迹	$0.9 \sim 1.0$	0．9～ 1.0
微风化	结构基本未变，仅节理面有渲染或略有变色，有少量裂隙	$0.8 \sim 0.9$	0．8～0．9
中等风化	结构部分破坏，沿节理面有次生矿物，风化裂隙发育，岩体被切割成岩块。用镐难挖，岩芯钻方可钻进	$0.6 \sim 0.8$	$0.4 \sim 0.8$
强风化	结构大部分破坏，成分显著变化，风化裂隙很发育，岩体破碎，用镐可挖，干钻不易钻进	$0.4 \sim 0.6$	＜ 0.4
全风化	结构基本破坏，但尚可辨认，有残余结构强度，可用镐挖，干钻可钻进	$0.2 \sim 0.4$	－
残积土	组织结构全部破坏，已风化成土状，锹镐易挖掘，干钻易钻进，具可塑性	<0.2	－

注：（1）波速比 K_{v} 为风化岩石与新鲜岩石压缩波速度之比；
（2）风化系数 K_{f} 为风化岩石与新鲜岩石饱和单轴抗压强度之比（岩石饱和单轴抗压强度可参阅1．4．2节）。
2．风化带及风化壳
影响风化作用的营力存在于大气圈，水圈和岩石圈的最上部，因而风化作用也就限于地壳最上层的岩石。一般将地壳表层在不同程度上进行着风化作用的部分，称为风化带。在风化带中，风化作用进行的强弱程度是不相同的。越靠近地表，风化营力越活跃，风化作用也就越强烈，向下则逐渐减弱，直至完全停止。风化带的厚度取决于岩石的性质以及自然地理和水文地质条件，通常不超过 500 m ，某些地区（如俄罗斯陆台上）可达 1500 m 。一方面，由于人类的工程活动主要是在风化带的上部进行；另一方面，还由于风化作用随深度增加而减弱，达到一定限度之后，极度轻微的风化已不能对人类的工程活动发生实际影响，所以又将风化带的上部，风化相对强烈而对人类建筑活动可能发生较大影响的部分，称为风化壳。

地表岩石不同风化带之间的分界线是很多工程设计中所需要的一项重要地质资料，作为基岩持力层，基坑开挖，挖方边坡坡度及采取相应加固措施的依据之一。由于各地的地层岩性，地质构造，地形和水文地质条件不同，岩石风化带的分布情况变化很大。一般来讲，风化速度是很缓慢的，但某些岩体的表面风化速度可以很快。如我国南方的一些红色黏土岩，在室外气温 $14 \sim 17^{\circ} \mathrm{C}$ 时， 2 h 内可以使新鲜的岩石产生裂隙，开始剥落；红色砂质黏土岩，在室外气温 $29 \sim 40^{\circ} \mathrm{C}$ 时， 24 h 内产生裂隙，然后裂隙贯通开始剥落。只有在进行调查研究以后，才能提出切合实际的防止岩石风化的措施。如安徽省青式江陈村水库，其坝基为志留系的砂页岩，原拟定 100 m 高的混凝土重力坝建在新鲜岩石上，后因风化壳很厚，开挖及回填工程均较大，经方案的技术，经济比较后，将坝高降低到 75 m ，并以风化岩石为坝基。我国三峡水利枢纽，大坝选在强度较高的前震旦系结晶岩上，根据巨型大坝的要求，经多年反复研究，弱风化带上部及其以上部分需全部挖除，将大坝基础砌置于弱风化带下部的顶部。因此，岩石风化带的划分需要结合实际情况进行综合分析。

1．3．5．4 防治风化的措施

实践表明：岩石的抗风化能力的差异性很大，有些岩石如花岗岩风化速度很慢，而另外一些岩石风化速度很快，因此对于这类极易风化的岩石，必须采取相应的措施防止风化引起岩石力学性质的恶化，才能保证工程的安全，工程中常见的方法有：
（1）挖除法：适用于厚度不大的严重风化层，应予以清除。
（2）抹面法：在岩石表面喷抹水泥砂浆，沥青或用石灰，水泥砂浆封闭岩面。
（3）胶结灌浆法：向岩石孔隙，裂隙中注浆，提高岩石的整体性和强度，降低其透水性。
（4）排水法：为了减少具有侵蚀性的地表水，地下水对岩石中可溶性矿物的溶解作用，需做一些排水工程。

1.4 岩石的工程性质

岩石的工程性质主要是指岩石的物理性质，力学性质和水理性质。

1．4．1 物理性质

岩石的物理性质是评价岩石工程性质的基本指标，主要包括岩石的重量性质和孔隙性质。
1．密度 (ρ) 和重度 (γ)
单位体积岩石的质量称为岩石的质量密度，简称密度（ ρ ），单位为 $\mathrm{g} / \mathrm{cm}^{3}$ 或 $\mathrm{kg} / \mathrm{m}^{3}$ ；单位体积岩石的重力称为岩石的重力密度，简称重度（ γ ），单位为 $\mathrm{kN} / \mathrm{m}^{3}$ 。同一种岩石，密度大的结构致密，孔隙小，强度相对较高。

2．颗粒密度 $\left(\rho_{\mathrm{s}}\right)$ 和相对密度 $\left(d_{\mathrm{s}}\right)$
单位体积岩石固体颗粒的质量称为颗粒密度（ ρ_{s} ），单位为 $\mathrm{g} / \mathrm{cm}^{3}$ 或 $\mathrm{kg} / \mathrm{m}^{3}$ ；岩石颗粒密度 $\left(\rho_{\mathrm{s}}\right)$ 与水在 $4^{\circ} \mathrm{C}$ 时的密度（ ρ_{w} ）之比称为岩石的相对密度 $\left(d_{\mathrm{s}}\right)$ ，即：

$$
\begin{equation*}
d_{\mathrm{s}}=\frac{\rho_{\mathrm{s}}}{\rho_{\mathrm{w}}} \tag{1.1}
\end{equation*}
$$

3．孔隙度 (n) 与裂隙率 $\left(K_{\mathrm{T}}\right)$
岩石中孔隙体积（ V_{v} ）与岩石总体积（ V ）之比称为孔隙度 (n) ；岩石中各种节理，裂隙的体积与岩石总体积之比称为裂隙率（ K_{T} ）。孔隙度多用于评价松散土，石；而裂隙率多用于评价结晶连接的坚硬岩石。

4．孔隙比（e）
岩石中孔隙的体积与固体颗粒体积之比，称为孔隙比 e ：

$$
\begin{equation*}
e=\frac{v_{v}}{v_{\mathrm{s}}} \tag{1.2}
\end{equation*}
$$

孔隙比与孔隙度的换算关系为：

$$
\begin{equation*}
n=\frac{e}{1+e} ; \quad e=\frac{n}{1-n} \tag{1.3}
\end{equation*}
$$

在实际工作中，密度 (ρ) 和颗粒密度 $\left(\rho_{\mathrm{s}}\right)$ 通过试验取得，而孔隙度 (n) 和孔隙比 (e)可通过计算得到：

$$
\begin{equation*}
n=\left(1-\frac{\rho_{\mathrm{d}}}{\rho_{\mathrm{s}}}\right) \times 100 \% ; \quad e=\frac{\rho_{\mathrm{s}}}{\rho_{\mathrm{d}}}-1 \tag{1.4}
\end{equation*}
$$

ρ 和 ρ_{s} 越大，$n, ~ e$ 越小，岩石越致密，则岩石的工程性质越好。

1．4．2 力学性质

岩石的力学性质包括强度性质和变形性质两部分。
1．岩石的强度指标
岩石的强度是指岩石在外力作用下发生破坏时所能承受的最大应力。岩石的强度指标主要有：抗压强度，抗拉强度和抗剪强度。岩石的各种强度中，抗压强度最大，其次是抗剪强度，抗拉强度最小。
（1）抗压强度（ R ）。
岩石试样在单轴压缩下能够承受的最大压应力称单轴极限抗压强度，简称抗压强度。

$$
\begin{equation*}
R=\frac{P}{A} \tag{1.5}
\end{equation*}
$$

式中 R ——岩石抗压强度（MPa）；
P ——岩石破坏时的压力（ kN ）；
A ——岩石受压面积（ m^{2} ）。
抗压强度是反映岩石力学性质的最基本，最主要的指标之一，受一系列因素的影响与控制。首先是岩石的矿物成分，结构构造，孔隙度及风化程度；其次与岩石所处的状态（温度，湿度）及受力条件（初始应力）等有关。一般来讲，矿物成分单一，硅质的，处于干燥和非冻融状态下的结晶等粒的结晶岩石具有很高的抗压强度；反之则较低。对于同种岩石，由于孔隙度及风化程度等不同，其抗压强度也有很大的差异。如花岗岩，新鲜的抗压强度一般均超过 100 MPa ，而风化的花岗岩则抗压强度明显降低，有时甚至会低于 10 MPa 。

根据工程上的要求或试验目的的不同，抗压强度通常分为：
（1）干燥试样抗压强度（简称干压强度）；
（2）饱和试样抗压强度（简称湿压强度）；
（3）冻融试样抗压强度（简称冻压强度）。
（2）抗拉强度 $\left(R_{\mathrm{t}}\right)$ 。
岩石试样在单轴拉伸下能够承受的最大拉应力，以拉断破坏时的极限应力来表示，称为单轴极限抗拉强度，简称抗拉强度，单位为 MPa 或 kPa 。

由于试验技术上的原因，直接进行岩石拉伸试验是比较困难的，这仍是岩石试验领域长期以来的一个研究课题，目前多采用间接方法，其中主要的有䢃裂法，点荷载试验法等。

在工程地质实践中，岩石主要承受拉力的情况比较少，仅在评价陡崖岩体的稳定性，作为石板桥等建材石料的情况下，才需要考虑岩石的抗拉强度。但是，由于拉断是岩石破坏性质的类型之一，在各种方式的力的作用下都可能因拉应力的发展而发生折断，因此抗拉强度仍是岩石的一个重要的力学性质指标。此外，从微观上研究岩石破坏过程中的裂纹发展时，考虑岩石的抗拉强度也非常重要。
（3）抗剪强度 (τ) 。
岩石抵抗剪切破坏的极限能力，以剪断时剪切面上的极限剪应力表示，称为抗剪强度。岩石抗剪强度又可分为抗剪断强度，抗剪强度和抗切强度。
（1）抗剪断强度：是指在垂直压力作用下的岩石剪断强度，即：

$$
\begin{equation*}
\tau=\sigma \tan \varphi+c \tag{1.6}
\end{equation*}
$$

式中 τ ——岩石抗剪断强度（ kPa 或 MPa ）；
σ ——破裂面上的法向应力（ kPa ）；
φ ——岩石的内摩擦角 $\left(^{\circ}\right)$ ；
c ——岩石的黏聚力（ kPa 或 MPa ）；
$\tan \varphi$ ——岩石的摩擦系数。
坚硬岩石因结晶联结或胶结联结牢固，因此其抗剪断强度较高。
（2）抗剪强度：是沿已有的破裂面发生剪切滑动时的指标，即：

$$
\begin{equation*}
\tau=\sigma \tan \varphi \tag{1.7}
\end{equation*}
$$

显然，抗剪强度大大低于抗剪断强度。
（3）抗切强度：压应力等于零时的抗剪断强度，即：

$$
\begin{equation*}
\tau=c \tag{1.8}
\end{equation*}
$$

抗剪断强度，抗剪强度和抗切强度这三个表征岩石抵抗剪切破坏性能的指标，在不同的情况下各有其独特的意义。在评价由完整性较好的岩体组成的陡崖的稳定性时，采用抗剪断强度往往更接近于岩体在该条件下的受力特点；至于抗剪强度，则是评价重力坝抗滑稳定性的重要指标。在修建混凝土重力坝时，确定混凝土与岩石间的摩擦系数是一个非常重要的问题，其数值与两摩擦体的抗磨损能力以及接触面的粗糙程度有关。根据统计，我国的水利水电建设中，摩擦系数采用的经验值一般在 $0.5 \sim 0.75$ 范围内。

2．岩石的变形指标

根据弹性理论，岩石的变形特征可用变形模量和泊松比两个参数表示。
（1）变形模量。
变形模量是指岩石在单向受压时，轴向应力 $\left(\sigma_{y}=4 P / \pi d^{2}\right)$ 与轴向应变 $\left(\varepsilon_{y}=\Delta l / l\right)$ 之比。当应力－应变关系为直线时，变形模量为常量，数值上等于直线的斜率，因其变形为弹性变形，故称弹性模量，单位一般为 GPa 或 MPa。而实际中，岩石的应力应变大多为曲线关系，此时的变形模量为变量，即不同应力段上的模量不同，常用的有初始模量 E_{i} ，切线模量 E_{t} 和割线模量 E_{s} 三种，如图1．25所示。

（a）

（b）

图1．25 岩石单轴压缩变形试验
初始模量（ E_{i} ）是指曲线原点出的切线斜率，也叫初始弹性模量，反映了岩石的原始刚度，即：

$$
\begin{equation*}
E_{\mathrm{i}}=\frac{\sigma_{\mathrm{i}}}{\varepsilon_{\mathrm{i}}} \tag{1.9}
\end{equation*}
$$

切线模量 $\left(E_{\mathrm{t}}\right)$ 是指曲线中直线段的斜率，也称岩石的平均弹性模量，反映岩石裂隙闭合后的刚度，即：

$$
\begin{equation*}
E_{\mathrm{t}}=\frac{\sigma_{2}-\sigma_{1}}{\varepsilon_{2}-\varepsilon_{1}} \tag{1.10}
\end{equation*}
$$

式中，$\sigma_{1}, ~ \varepsilon_{1}$ 分别为曲线中直线段的起点处对应的应力和应变；$\sigma_{2}, ~ \varepsilon_{2}$ 分别为曲线中直线段的终点处对应的应力和应变。

割线模量（ E_{s} ）是指曲线上某特定点与原点连线的斜率，也叫割线弹性模量。通常取相当于抗压强度 50% 的应力点［图1．25（b）中的 $R_{\mathrm{c}} / 2$ ］与原点连线的斜率，反映岩石的平均刚度，即：

$$
\begin{equation*}
E_{550}=\frac{\sigma_{50}}{\varepsilon_{50}} \tag{1.11}
\end{equation*}
$$

式中 $\sigma_{1}-50 \%$ 的抗压强度所对应的点的应力（MPa）；
$\sigma_{2}-50 \%$ 的抗压强度所对应的点的应变。
（2）泊松比。
泊松比是指岩石在单向受压时，横向应变与轴向应变之比，即：

$$
\begin{equation*}
\mu=\frac{\varepsilon_{x}}{\varepsilon_{y}} \tag{1.12}
\end{equation*}
$$

通常取抗压强度 50% 的应变点的横向应变与轴向应变的比值，即：

$$
\begin{equation*}
\mu_{50}=\frac{\varepsilon_{x 50}}{\varepsilon_{y 50}} \tag{1.13}
\end{equation*}
$$

与上述切向模量类似，有时也可求出岩石的平均泊松比，即：

$$
\begin{equation*}
\mu_{\mathrm{t}}=\frac{\varepsilon_{x 2}-\varepsilon_{x 1}}{\varepsilon_{y 2}-\varepsilon_{y 1}} \tag{1.14}
\end{equation*}
$$

式中 $\varepsilon_{x 1}, ~ \varepsilon_{y 1}$ ——曲线中直线段的起点处对应的横向应变和轴向应变；
$\varepsilon_{x 2}, ~ \varepsilon_{y 2}$ —曲线中直线段的终点处对应的横向应变和轴向应变。

1．4．3 水理性质

水理性质是岩石与水作用时所表现的性质，通常包括：
1．吸水性
岩石在浸水过程中具有的吸水性能叫作岩石的吸水性。岩石的吸水性取决于岩石本身所含裂隙，孔隙的数量，大小，开闭程度及分布情况。

表示岩石吸水性的指标有吸水率，饱和吸水率与饱和系数。
（1）吸水率 $\left(w_{1}\right)$ 。在 1 个标准大气压的条件下，岩石浸人水中充分吸水，被吸收的水的质量（ $G_{\mathrm{w} 1}$ ）与干燥岩石质量（ G_{s} ）之比为吸水率 $\left(w_{1}\right)$ ，即：

$$
\begin{equation*}
w_{1}=\frac{G_{\mathrm{w} 1}}{G_{\mathrm{s}}} \tag{1.15}
\end{equation*}
$$

（2）饱和吸水率（ w_{2} ）。干燥的岩石在 150 个大气压力下或在真空中保存，然后再浸水，浸入全部开口的孔隙中的水的重量（ $\mathrm{G}_{\mathrm{w} 2}$ ）与岩石干重（ G_{s} ）之比为饱和吸水率（ w_{2} ），即：

$$
\begin{equation*}
w_{2}=\frac{G_{\mathrm{w} 2}}{G_{\mathrm{s}}} \tag{1.16}
\end{equation*}
$$

（3）饱和系数（ k_{w} ）。指岩石的吸水率与饱和吸水率之比，即：

$$
\begin{equation*}
k_{\mathrm{w}}=\frac{w_{1}}{w_{2}} \tag{1.17}
\end{equation*}
$$

2．透水性
透水性指岩石容许水透过的能力，用渗透系数 k 来表示。渗透系数的大小与岩石的孔隙大小有关。

3．软化性

岩石浸水饱和后强度降低的性质，称为软化性，用软化系数（ K_{R} ）表示。 K_{R} 定义为岩石试件的饱和抗压强度 $\left(\sigma_{\mathrm{cw}}\right)$ 与干燥抗压强度 $\left(\sigma_{\mathrm{cd}}\right)$ 的比值，即：

$$
\begin{equation*}
K_{\mathrm{R}}=\frac{\sigma_{\mathrm{cw}}}{\sigma_{\mathrm{cd}}} \tag{1.18}
\end{equation*}
$$

岩石的软化性主要与岩石的孔隙度，风化程度，组成岩石的矿物成分及颗粒的结合强度等有关。一般裂隙发育，风化严重，含有大量黏土矿物的岩石极易软化。凡软化现象严重的岩石，其抗风化能力，抗冻性及力学强度等都比较低。各类岩石的软化系数大多为 $0.40 \sim 0.95$ ，不同类型岩石的软化系数试验值如表1．13所示。一般认为，软化系数 $K_{\mathrm{R}}>0.75$ 时，岩石的软化性弱，同时也说明岩石的抗冻性和抗风化能力强。而 $K_{\mathrm{R}}<0.75$ 的岩石则是软化性较强和工程地质性质较差的岩石。

表 1.13 某些岩石的软化系数试验值

岩石种类	软化系数	岩石种类	软化系数
花岗岩	$0.80 \sim 0.98$	砂岩	$0.60 \sim 0.97$
闪长岩	$0.70 \sim 0.90$	泥岩	$0.10 \sim 0.50$
辉长岩	$0.65 \sim 0.92$	页岩	$0.55 \sim 0.70$
辉绿岩	0.92	片麻岩	$0.70 \sim 0.96$
玄武岩	$0.70 \sim 0.95$	片岩	$0.50 \sim 0.95$
凝灰岩	$0.65 \sim 0.38$	石英岩	$0.80 \sim 0.98$
白云岩	0.83	板岩	$0.68 \sim 0.85$
石灰岩	$0.68 \sim 0.94$	千枚岩	$0.78 \sim 0.95$

岩石的软化性对水工建筑物或与水长期接触的建筑物极为重要，因为岩石在长期浸水状态下，其内部联结性逐渐削弱，性质发生变化，尤其是岩石的强度大大降低，对坝基，库岸，渠道，浸水路基等有一定危害，因此必须考虑岩石的软化性。

4．抗冻性
岩石抵抗冻融破坏的能力，称为抗冻性。常用抗冻系数和质量损失率来表示。抗冻系数（ R_{d} ）是指岩石试件经反复冻融后的干抗压强度（ $\sigma_{\mathrm{c} 2}$ ）与冻融前干抗压强度（ $\sigma_{\mathrm{c} 1}$ ）之比，用百分数

表示，即：

$$
\begin{equation*}
R_{\mathrm{d}}=\frac{\sigma_{\mathrm{c} 2}}{\sigma_{\mathrm{c} 1}} \times 100 \% \tag{1.19}
\end{equation*}
$$

质量损失率 $\left(K_{\mathrm{m}}\right)$ 是指冻融试验前后干质量之差 $\left(m_{\mathrm{s} 1}-m_{\mathrm{s} 2}\right)$ 与试验前干质量 $\left(m_{\mathrm{s} 1}\right)$ 之比，以百分数表示，即：

$$
\begin{equation*}
K_{\mathrm{m}}=\frac{m_{\mathrm{s} 1}-m_{\mathrm{s} 2}}{m_{\mathrm{s} 1}} \times 100 \% \tag{1.20}
\end{equation*}
$$

试验时，要求先将岩石试件浸水饱和，然后在 $-20 \sim 20^{\circ} \mathrm{C}$ 温度下反复冻融 25 次以上。冻融次数和温度可根据工程地区的气候条件选定。

抗冻性是岩石抵抗冻融破坏的能力。岩石的抗冻性与岩石的结构有关。岩石经过多次冻融作用后，其强度一般都会降低，甚至破坏。其原因一方面是由于组成岩石的不同矿物颗粒在不同温度下其膨胀和收缩性能不同，致使岩石改变或破坏；另一方面，由于浸入岩石孔隙，裂隙中的水在冻结成冰时体积增加，对岩石孔隙，裂隙壁产生巨大的压力而使岩石破坏。一般来讲，裂隙或孔隙发育，特别是大开口孔隙多，矿物成分复杂，颗粒粗大，结构构造不均和联结软弱的岩石，其抗冻性较差。

5．可溶性

可溶性是指岩石被水溶解的性能。常用溶解度或溶解速度来表示。在自然界中常见的可溶性岩石，有石膏，岩盐，石灰岩，白云岩及大理岩等。岩石的溶解能力不但和岩石的化学成分有关，而且还和水的性质有很大关系。与之有关的内容将在第 6 章＂岩溶＂部分中详细介绍。

6．膨胀性

岩石的膨胀性是指岩石浸水后体积增大的性质。某些含黏土矿物（如蒙脱石，水云母及高岭石）成分的软质岩石，经水化作用后在黏土矿物的晶格内部或细分散颗粒的周围生成结合水溶剂腔（水化膜），并且在相邻近的颗粒间产生楔䢃效应，当楔䢃作用力大于结构联结力，岩石就表现出体积增大的膨胀性。

岩石膨胀性大小一般用膨胀力和膨胀率两项指标表示，这些指标可通过室内试验确定。目前国内大多采用土的固结仪和膨胀仪测定岩石的膨胀性，测定岩石膨胀力和膨胀率的试验方法常用的有平衡加压法，压力恢复法和加压膨胀法等。其中，自由膨胀率的定义为：无约束条件下，浸水后胀变形与原尺寸之比。用如下两个参数表示：

轴向自由膨胀率为：

$$
\begin{equation*}
V_{\mathrm{H}}=\frac{\Delta H}{H} \times 100 \% \tag{1.21}
\end{equation*}
$$

径向自由膨胀率为：

$$
\begin{equation*}
V_{\mathrm{D}}=\frac{\Delta D}{D} \times 100 \% \tag{1.22}
\end{equation*}
$$

式中 $H, ~ D$ ——试件的初始高度和初始直径（ mm ）； ΔH ，ΔD ——浸水膨胀后高度和直径的变化量。

7．崩解性

崩解性是指岩石被水浸泡，内部结构遭到完全破坏呈碎块状崩开散落的性能。这种现象是由于水化过程中削弱了岩石内部的结构联结引起的，常见于由可溶盐和黏土质胶结的沉积岩地层中。

岩石崩解性一般用岩石的耐崩解性指数 $I_{\mathrm{d} 2}$ 表示，它是通过对岩石试件进行烘干，浸水循环试验所得的指标。

$$
\begin{equation*}
I_{\mathrm{d} 2}=\frac{m_{\mathrm{r}}}{m_{\mathrm{s}}} \times 100 \% \tag{1.23}
\end{equation*}
$$

式中 m_{r} ——试验前的试件烘干质量（ g 或 kg ）；
m_{s} ——残留在筒内的试件烘干质量（ g 或 kg ）。

1．4．4 岩石的工程分类

工程中根据不同的目的和用途，采用不同的指标，通常要对岩石进行不同的分类。

1．4．4．1 岩石按坚硬程度的划分

《岩土工程勘察规范》（GB50021—2001）中按岩石的坚硬程度（饱和单轴极限抗压强度 R_{c} （MPa））划分为 5 类：坚硬岩石 $\left(R_{\mathrm{c}}>60\right)$ ，较硬岩 $\left(60 \geqslant R_{\mathrm{c}}>30\right)$ ，较软岩 $\left(30 \geqslant R_{\mathrm{c}}>15\right)$ ，软岩 $\left(15 \geqslant R_{\mathrm{c}}>5\right)$ ，极软岩 $\left(R_{\mathrm{c}} \leqslant 5\right)$ ，如表1．14所示。

表 1.14 岩石按坚硬程度的定性划分

	名称	定性鉴定	代表性岩石
硬质岩	坚硬岩	锤击声清脆，有回弹，震手，难击碎；浸水后，大多数无吸水反应	未风化至微风化的：花岗岩，正长岩，闪长岩，辉绿岩，玄武岩，安山岩，片麻岩，石英片岩，硅质板岩，石英岩，硅质胶结的砾岩，石灰岩，硅质石灰岩等
	较硬岩	锤击声较清脆，有轻微回弹，稍震手，较难击碎；浸水后，有轻微吸水反应	（1）弱风化的坚硬岩； （2）未风化至微风化的大理岩，板岩，白云岩，石灰岩，钙质胶结的砂岩等
软质岩	较软岩	锤击声不清脆，无回弹，较易击碎；浸水后，指甲可刻出印痕	（1）强风化的坚硬岩； （2）弱风化的较坚硬岩； （3）未风化至微风化的凝灰岩，千枚岩，砂质泥岩，泥灰岩，泥质砂岩，粉砂岩，页岩等
	软岩	锤击哑，无回弹，有凹痕，易击碎；浸水后，手可凖开	（1）强风化的坚硬岩； （2）弱风化至强风化的较坚硬岩； （3）弱风化的较软岩； （4）未风化的泥岩等
	极软岩	锤击哑，无回弹，有较深凹痕，手可捏碎；浸水后，手可捏成团	（1）全风化的各种岩石； （2）各种半成岩

1．4．4．2 岩土的施工工程分级

在道路和铁道工程地质勘察中，通常还要根据岩土性质和施工的难易程度进行岩土施工工程分级，其分级方法和分级标准见表1．15。

表 1.15 岩土施エエ程分级

$\begin{aligned} & \text { 岩 } \\ & \text { 土 } \\ & \text { 等 } \\ & \text { 级 } \end{aligned}$	级	岩土名称	钻 1 m 所需时间			岩石单轴饱和抗压强度／MPa	开挖方法
			液压凿岩台车，浅孔钻机（净钻分钟）	手持风枪湿式凿岩合金钻头（净钻分钟）			
I	$\begin{gathered} \text { 松 } \\ 土 \end{gathered}$	砂类土，种植土，未经压实的填土					用铁锹挖，脚蹬一下到底的松散土层，机械能全部直接铲挖，普通装载机可满载
II	$\begin{aligned} & \text { 普 } \\ & \text { 通 } \\ & \text { 土 } \end{aligned}$	坚硬的，可塑的粉质黏土，可塑的黏土，膨胀土，粉土。 Q2，Q4 黄土。稍密，中密角砾土，圆砾土，松散的碎石土，卵石土，压密的填土，风积砂					部分用镐刨松，再用铁锹，脚连蹬数次才能挖动。挖掘机，带齿尖口装载机可满载，普通装载机可直接铲挖，但不能满载
III	$\begin{gathered} \text { 硬 } \\ 土 \end{gathered}$	坚硬的黏性土，膨胀土， Q_{2} ， Q_{4} 黄土，稍密，中密碎石土，卵石土，密实的圆砾土，角砾土，各种风化成土状的岩石					必须用镐先全部刨过才能用铁锹挖，挖掘机，带齿尖口装载机不能满载，大部分采用松土器松动方能铲挖装卸
IV	$\begin{aligned} & \text { 软 } \\ & \text { 石 } \end{aligned}$	块石土，漂石土，含块石，漂石 $\geqslant 30 \% \sim 50 \%$ 的碎石土，卵石土，岩盐，泥质岩类，云母片岩，千枚岩	－	＜7	<0.2	＜30	部分用㼲杠或十字镐及大锤开挖或挖掘机，单钩裂土器松动，部分需借助冲击镐解碎或爆破法开挖
V	$\begin{aligned} & \text { 次 } \\ & \text { 坚 } \\ & \text { 石 } \end{aligned}$	各种硬质岩：硅质岩，钙质岩，白云岩，石灰岩，坚实的泥灰岩，软玄武岩，片岩，片麻岩，正长岩，花岗岩	$\leqslant 15$	$7 \sim 20$	$0.2 \sim 1.0$	$30 \sim 60$	大部分用液压冲击镐解碎，小部分用爆破法开挖
VI	$\begin{aligned} & \text { 坚 } \\ & \text { 石 } \end{aligned}$	各种极硬岩：硅质砂岩，硅质砾岩，致密的石英质灰岩，石英岩，大理岩，闪长岩，细粒花岗岩	＞15	＞20	＞10	＞60	小部分用液压冲击镐解碎，大部分用爆破法开挖

思 考 题

1．什么是地质作用？举例说明常见的内动力地质作用和外动力地质作用包括哪些作用？
2．什么是矿物？矿物有哪些主要光学，力学性质？常见的造岩矿物有哪几种？
3．依次熟记＂莫氏硬度计＂的代表矿物，并掌握在野外鉴别矿物硬度的方法。
4．什么叫岩石？岩石都是由矿物组成的吗？常见的建材如花岗石，石灰石，大理石是岩石还是矿物？

5．酸性，中性，基性，超基性的岩浆岩矿物成分有何不同？

6．试从深成岩，浅成岩，喷出岩的不同结构，构造来说明，为什么岩浆岩的结构，构造特征是其生成环境的综合反映？

7．岩浆岩是如何分类的？分为哪几类？每一类型的代表岩石是什么？
8．何谓层理？举出常见层理的类型及其形成环境。
9．沉积岩是如何分类的？分为哪几类？每一类型的代表岩石是什么？
10．何谓变质作用？常见的变质矿物有哪些？
11．什么是变质岩的片理构造？它包括哪几种具体的构造？
12．变质岩是如何分类的？分为哪几类？每一类型的代表岩石是什么？
13．简述三大类岩石的相互转化过程。
14．岩石的工程性质包括哪几方面？
15．论述风化作用的类型及其影响因素。

