四川省工程建设地方标准

四川省预成孔植桩技术标准

Technical standard for planting pile in prebored hole in Sichuan Province

DBJ51／T 184—2021

主编单位：四川省建筑科学研究院有限公司建 华 建 材（四川）有 限 公 司批准部门：四川省住房和城乡建设厅施行日期： 20

四川省工程建设地方标准

四川省预成孔植桩技术标准

Technical standard for planting pile in prebored hole in Sichuan Province DBJ51／T 184－2021

＊
责任编辑：王同晓
封面设计：曹天擎
西南交通大学出版社出版，发行

（四川省成都市金牛区二环路北一段111号西南交通大学创新大厦21楼）
各地新华书店，建筑书店经销
成都蜀通印务有限责任公司印刷

成品尺寸： $140 \mathrm{~mm} \times 203 \mathrm{~mm}$ 印张： 2 字数： 47 千
2022年3月第1版2022年3月第1次印刷
定价： 24.00 元
统一书号：155643•163
版权所有 盗版必究（举报电话：028－87600562）
图书如有印装质量问题，本社负责退换
（邮政编码610031）
网 址：https：／／www．xnjdcbs．com
网上书店：https：／／xnjtdxcbs．tmall．com

关于发布《四川省建设工程造价电子数据标准》等 5 项四川省工程建设地方标准的通知川建标发（2021） 327 号

各市（州）及扩权试点县（市）住房城乡建设行政主管部门，各有关单位：

现批准《四川省建设工程造价电子数据标准》《四川省工程建设项目招标代理操作规程》《四川省盾构隧道混凝土预制管片技术规程》《四川省预成孔植桩技术标准》《四川省纳米蒙脱石纤维复合材料工程应用技术标准》等 5 项为四川省工程建设推荐性地方标准（见附件）。

附件：《四川省建设工程造价电子数据标准》等 5 项四川省工程建设推荐性地方标准

四川省住房和城乡建设厅 2021年12月24日

附件
《四川省建设工程造价电子数据标准》等 5 项四川省工程建设推荐性地方标准

序号	地方标准名称	主编单位	标准号	施行时间	负责技术内容解释单位	备 注
1	四川省建设工程造价电子数据标准	四川省建设工程造价总站，成都鹏业软件股份有限公司	DBJ51／T 048－2021	2022年4月1日	四川省建设工程造 价总站	原《四川省建设工程造价电子数据标准》 DBJ51／T 048 －2015 于本标准施行之日起废止
2	四川省工程建设项目招标代理操作规程	四川省建设工程招标投标总站	DBJ51／T 040－2021	2022年4月1日	四川省建设工程招标投标总站	原《四川省工程建设项目招标代理操作规程》DBJ51／T 040 － 2015 于本标准施行之日起废止
3	四川省盾构隧道混凝土预制管片技术规程	中铁二十三局集团有限公司	DBJ51／T 183－2021	2022年4月1日	$\begin{aligned} & \text { 中铁二十三局集团 } \\ & \text { 有限公司 } \end{aligned}$	－
4	四川省预成孔植桩技术标准	四川省建筑科学研究 院有限公司，建华建 材（四川）有限公司	DBJ51／T 184－2021	2022年4月1日	四川省建筑科学研究院有限公司	－
5	四川省纳米蒙脱石纤维复合材料工程应用技术标准	中国建筑西南设计研究院有限公司	DBJ51／T 185－2021	2022年4月1日	中国建筑西南设计研究院有限公司	－

前 言

根据四川省住房和城乡建设厅《关于下达工程建设地方标准计划的通知》（川建标发〔2020〕157号）的要求，由四川省建筑科学研究院有限公司，建华建材（中国）有限公司会同有关单位组成的标准编制组经过广泛调查研究，认真总结实践经验，参考有关国内外先进标准，并在广泛征求意见的基础上，制定本标准。

本标准主要内容包括： 1 总则； 2 术语和符号； 3 基本规定； 4 设计； 5 施工； 6 质量检查和验收。

本标准由四川省住房和城乡建设厅负责管理，由四川省建筑科学研究院有限公司负责具体内容的解释。本标准在执行过程中，如有意见或建议，请寄送至四川省建筑科学研究院有限公司（地址：成都市一环路北三段 55 号；电话： $028-83371831$ ；邮箱： 184719906＠qq．com；邮编610081）。

主 编 单 位：四川省建筑科学研究院有限公司
建华建材（四川）有限公司
参 编 单 位：四川省建筑工程质量检测中心有限公司
四川华西管桩工程有限公司
中国建筑西南设计研究院有限公司
中治成都勘察研究总院有限公司
中国建筑西南勘察设计研究院有限公司
成都四海岩土工程有限公司
成都市建设工程质量监督站

四川中泰联合设计股份有限公司
四川鑫祥茂建筑工程有限公司
四川精工勘测基础工程有限公司
主要起草人：蒋志军 李泽泽 张炳焜 许 星
李志高 毕 琼 李耀家 沈 泽
李晓岑 岳大昌 徐存光 李 明
胡 熠 梁 立 胡 刚 廖中原
罗东林 雷 雨 莫道平 江 海
钟家明 杨小洪 陈 鹏 章学良
雷发洪 宋 静
主要审查人：罗进元 张仕忠 钟义敏 黄练红
梁 勇 余德彬 吴 波

目 次

1 总 则 1
2 术语和符号 2
2.1 术 语 ． 2
2.2 符 号 3
3 基本规定 5
4 设 计 7
4.1 一般规定 7
4.2 构 造 9
4.3 桩 基． 12
4.4 基坑支护 18
5 施 工 20
5.1 一般规定 20
5.2 施工准备 20
5.3 施 工． 21
6 质量检查和验收 26
6.1 一般规定 26
6.2 施工前检验 26
6.3 施工过程检验 27
6.4 施工后检验 27
6．5 工程质量验收 28
附录 A 预成孔施工记录 29
附录 B 植桩施工记录 31
本标准用词说明 33
引用标准名录 35
附：条文说明 37

Contents

1 General provisions 1
2 Terms and symbols 2
2.1 Terms 2
2.2 Symbols 3
3 Basic requirements 5
4 Design 7
4.1 General requirements 7
4.2 Basic structures 9
4.3 Pile foundation 12
4.4 Retaining and protection for excavations 18
5 Construction 20
5.1 General requirements 20
5.2 Construction preparation 20
5.3 Construction 21
6 Quality inspection and acceptance 26
6.1 General requirements 26
6.2 Inspection before construction 26
6.3 Inspection in construction 27
6.4 Inspection after construction 27
6.5 Acceptance of construction quality 28
Appendix A Construction record of prebored hole 29
Appendix B Construction record of planting pile 31
Explanation of wording in this code 33
List of quoted standards 35
Addition: Explanation of provisions 37

3 基本规定

3． 0.1 预成孔植桩应根据成孔设备能力确定适用岩土层范围，对于存在下列水文及地层条件的场地，应通过试验确定其适用性及有关施工参数：

1 流塑状黏性土，淤泥，淤泥质土，泥炭质土，泥炭等土层；

2 厚度较大的新近填土；
3 影响成桩质量的地下水条件。
3．0．2 预成孔植桩可用于基础基桩，基坑支护桩施工。植入预应力高强混凝土空心桩的产品质量应符合国家现行标准《先张法预应力混凝土管桩》GB13476 及《预应力混凝土空心方桩》 JG／T 197 的有关规定。
3．0． 3 预成孔植桩的岩土工程勘察应满足地基基础设计，施工要求，并提出施工对环境的影响评价及保护措施建议。
3． 0.4 采用预成孔植桩的桩基设计应满足承载力，变形，稳定性和耐久性要求。
3． 0.5 采用预成孔植桩的地基基础设计与施工应根据场地工程地质条件，水文地质条件，上部结构特点，荷载特征，施工技术条件与周围环境等综合考虑，并应加强施工过程的质量控制和管理。

3．0．6 地基基础设计等级为甲级，或地质条件复杂的设计等级为乙级的预成孔植桩桩基，应通过现场工艺试验，验证其可行性，

并应通过单桩静载荷试验确定单桩承载力特征值，同一条件下，静载荷试验数量不应少于 3 根。

4 设 计

4.1 一般规定

4．1．1 采用预成孔植桩的桩基或基坑支护工程设计时，应具备下列资料：

1 岩土工程勘察报告；
2 建筑物总平面布置图，上部结构类型，荷载大小及分布，建筑物对基础变形的要求；

3 场地周边环境情况及其对基坑变形的承受能力；
4 基坑支护设计时应掌握主体地下结构，基础形式及施工方法，了解基坑平面形状及尺寸；

5 施工机械设备，施工工艺及其对场地条件的适应性；
6 施工对周边环境的不利影响。
4．1．2 预成孔植桩设计时应根据工程地质条件及荷载要求确定桩的型号，桩径，桩长或持力层等相关参数。
4．1． 3 采用预成孔植桩的桩基应根据具体条件分别进行下列承载力计算和稳定性验算：

1 根据桩基使用功能和受力特征应进行桩的承载力计算；
2 应对桩身，承台结构承载力进行计算；对桩侧土不排水抗剪强度小于 10 kPa 且长径比大于 50 的桩，应进行桩身压屈验算；应按吊装，运输和锤击作用进行桩身承载力验算；

3 当桩端平面以下存在软弱下卧层时，应进行软弱下卧层承载力验算；

4 位于坡地，岸边的桩基，应进行整体稳定性验算；
5 对于抗拔桩基，应进行基桩和群桩的抗拔承载力计算；
6 对于抗震设防区的桩基，应进行抗震承载力验算。
4．1．4 下列预成孔植桩桩基应进行沉降计算：
1 对设计等级为甲级的非嵌岩桩，非深厚坚硬持力层的桩基；
2 设计等级为乙级的体型复杂，荷载分布显著不均匀，桩端平面以下存在软弱土层的桩基；

3 软土地基多层建筑减沉复合疏桩基础。
4．1．5 承受水平荷载较大或水平位移有严格限制的预成孔植桩桩基，应计算其水平位移。

4．1．6 预成孔植桩桩基的沉降和水平位移计算应按现行行业标准《建筑桩基技术规范》JGJ 94 的有关规定进行。
4． 1.7 采用预成孔植桩的基坑支护结构计算，验算及基坑变形控制应符合现行行业标准《建筑基坑支护技术规程》JGJ 120 的有关规定，基坑支护结构最大水平位移控制值宜符合表 4．1．7 的规定。

表 4．1．7 支护结构最大水平位移控制值

基坑安全等级	针拉桩支护	悬臂式排桩支护
一级	$\leqslant 0.002 H$, 且 $\leqslant 30 \mathrm{~mm}$	$\leqslant 0.003 H$, 且 $\leqslant 35 \mathrm{~mm}$
二级	$\leqslant 0.003 H$, 且 $\leqslant 35 \mathrm{~mm}$	$\leqslant 0.004 H$, 且 $\leqslant 40 \mathrm{~mm}$
三级	$\leqslant 0.004 H$, 且 $\leqslant 40 \mathrm{~mm}$	$\leqslant 0.005 H$, 且 $\leqslant 45 \mathrm{~mm}$

注： 1 表中 H 为基坑深度（ mm ）；
2 位移控制值是指支护结构容许发生的最大水平位移变形值。
4．1． 8 对于不允许出现裂缝的桩基，应进行桩身抗裂验算；对

于限制裂缝宽度的桩基，应进行桩身裂缝宽度验算；桩身的裂缝控制等级及最大裂缝宽度限值应按现行行业标准《建筑桩基技术规范》JGJ 94 的有关规定执行。
4．1．9 应根据地下水或土对预制桩的腐蚀等级进行防腐设计，防腐设计应符合现行国家标准《混凝土结构设计规范》GB50010和《工业建筑防腐蚀设计标准》GB／T 50046 的有关规定。
4．1．10 对于本标准第4．1．4 条规定应进行沉降计算的建筑桩基，在施工过程期间及建成后使用期间，应进行系统的沉降观测直至沉降稳定。

4.2 构 造

4．2．1 预成孔植桩的成孔直径应大于预应力高强混凝土空心桩外径，成孔直径与预应力高强混凝土空心桩外径或边长之差宜为 $100 ~ 400 \mathrm{~mm}$ 。

4．2．2 预应力高强混凝土空心桩与预成孔的孔壁之间空隙填充料可选用水泥浆，水泥砂浆，细石混凝土等材料。水泥宜选用 42.5级及以上的普通硅酸水泥，水泥砂浆强度等级不宜低于 M20，细石混凝土强度等级不宜低于 C 20 。

4． 2.3 预成孔植桩桩端宜采用闭口型桩尖封闭。
4．2．4 预成孔植桩桩基的基桩最小中心距不宜小于 3.0 d ，以硬质岩为持力层的端承桩，最小中心距不宜小于 $2.5 d$ 。
4． 2.5 桩端持力层应选择硬土层，桩端全断面进人持力层深度 （不包括桩尖部分）应符合下列要求：

1 对于黏性土，粉土，全风化岩不宜小于 $2.0 D$ ；

2 砂土，强风化软质岩等不宜小于 $1.5 D$ ；
3 碎石土，强风化硬质岩等不宜小于 $1.0 D$ ；
4 当存在软弱下卧层时，桩端以下硬持力层厚度不宜小于 $3 D$ ；
5 抗震设防区桩端进入液化层以下稳定土层的长度应按计算确定并应满足本条第 $1 \sim 4$ 款要求。
4． 2.6 植桩接桩应符合下列规定：
1 桩上下节拼接可以采用端板焊接连接或机械接头连接，接头应保证桩内纵向钢筋与端板等效传力，接头连接强度不应小于桩身强度；

2 用作抗拔的桩宜采用机械连接；
3 单桩接头数量不宜超过 3 个。
4． 2.7 预应力高强混凝土空心桩顶部与承台连接的混凝土填芯应符合下列规定：

1 对于承压桩，填芯混凝土深度不应小于 3 倍桩径且不应小于 1.5 m ；对于抗拔桩，利用填芯混凝土承受抗拔力时，填芯混凝土深度应通过计算确定，且不应小于 3 m ；对于桩顶承担较大水平力的桩，填芯混凝土深度应通过计算确定，不应小于 6 倍桩径，且不得小于 3 m ；填芯混凝土深度计算应按现行行业标准《预应力混凝土管桩技术标准》JGJ／T 406 的有关规定执行；

2 应采用无收缩混凝土或微膨胀混凝土，其强度等级应比承台或承台梁提高一个等级，且不应低于 C30；

3 填芯混凝土应灌注饱满，振捣密实。
4．2． 8 桩与承台连接应符合下列规定：
1 中等直径的预制桩桩顶嵌入深度不应小于 50 mm ，大直径桩桩顶嵌入深度不应小于 100 mm ；

2 桩与承台之间连接应设置连接钢筋，钢筋深入桩内的长度不应小于 40 倍钢筋直径，且应与顶部填芯混凝土灌注深度相同；

3 对于承压桩，连接钢筋配筋率按桩外径实心截面计算不应小于 0.6% ，数量不宜小于 4 根，锚入承台内的长度不应小于 35 倍钢筋直径。

4 对于抗拔桩，连接钢筋的数量应根据抗拔承载力确定，锚入承台内的长度尚应满足现行国家标准《混凝土结构设计规范》GB 50010 的有关规定。
4． 2.9 植桩桩基承台之间的连系梁应符合下列规定：
1 单桩承台应在两个方向设置；
2 两桩承台应在其短向设置；
3 有抗震设防要求的柱下桩基承台，宜沿两个主轴方向设置；
4 连系梁顶面宜与承台顶面位于同一标高。连系梁宽度不宜小于 250 mm ，其高度可取承台中心距的 $1 / 10 \sim 1 / 15$ ，且不宜小于 400 mm ；

5 连系梁配筋应按计算确定，梁上，下部配筋不宜小于 2根直径为 12 mm 的钢筋，并应按受拉钢筋针入承台；当连系梁承受柱底弯矩时，应按框架梁配筋设计。
4． 2.10 基坑支护采用双排预应力高强混凝土空心桩时，前后排距不宜小于 3 倍桩径。

4． 2.11 基坑支护桩桩间钢筋网宜采用土钉固定，土钉长度不宜小于 1 倍桩间距，混凝土面板厚度不应小于 80 mm 。
4．2． 12 支护桩桩顶应设置钢筋混凝土冠梁，桩与冠梁的连接应符合本标准第 4．2．7 条和 4．2．8 条的规定，冠梁混凝土强度等级不

应低于 C30，宽度宜大于排桩桩径 200 mm ，高度不宜小于桩径的 0.6 倍，且不宜小于 500 mm 。

4.3 桩 基

4．3． 1 预成孔植桩桩基设计时所采用的作用效应组合与相应抗力的确定应按现行行业标准《建筑桩基技术规范》JGJ 94 的有关规定执行。
4．3．2 单桩坚向承载力特征值 R_{a} 应按下式确定：

$$
\begin{equation*}
R_{\mathrm{a}}=\frac{1}{K} Q_{\mathrm{uk}} \tag{4.3.2}
\end{equation*}
$$

式中：Q_{uk} ——单桩坚向极限承载力标准值（ kN ）；
K ——安全系数，取 $K=2$ 。
4．3．3 初步设计时，单桩坚向极限承载力标准值可按下式估算：
摩擦型桩或端承型桩 $\quad Q_{\mathrm{uk}}=u_{D} \sum \alpha_{\mathrm{si}} q_{\mathrm{sik}} l_{i}+q_{\mathrm{pk}} A_{\mathrm{p}}$
嵌岩桩

$$
\begin{equation*}
Q_{\mathrm{uk}}=u_{D} \sum \alpha_{\mathrm{s} i} q_{\mathrm{sik}} l_{i}+\varsigma_{\mathrm{r}} f_{\mathrm{rk}} A_{\mathrm{p}} \tag{4.3.3-1}
\end{equation*}
$$

式中：$\alpha_{s i}$ ——桩侧阻力发挥系数，可取 $1.1 \sim 1.3$ ，黏性土可取低值，砂性土可取高值；
u_{D} ——预成孔周长（ m ）；
l_{i} —第 i 层土（岩）的厚度（m）；
$q_{\text {sik }}$ ——单桩第 i 层土（岩）的极限侧阻力标准值（ kPa ），无经验时，可按表 4．3．3－1 取值；
q_{pk} ——单桩极限端阻力标准值（ kPa ），无经验时，可按表 4．3．3－2 取值；
$f_{\text {rk }}$ ——岩石饱和单轴抗压强度标准值（ kPa ），黏土岩取天然湿度单轴抗压强度标准值；
S_{r} ——桩嵌岩段侧阻和端阻综合系数，可按表 4．3．3－3 采用； A_{p} ——预应力高强混凝土空心桩桩端面积（ m^{2} ）；

表 4．3．3－1 桩的极限侧阻力标准值 $q_{\text {sik }}$（ kPa ）

土的名称	土的状态		泥浆护壁钻 （冲）孔桩	干作业钻孔桩
填土		－	$20 \sim 28$	$20 \sim 28$
淤泥		－	$12 \sim 18$	$12 \sim 18$
淤泥质土		－	$20 \sim 28$	$20 \sim 28$
黏性土	流塑 软塑 可塑硬可塑 硬塑 坚硬	$\begin{gathered} I_{L}>1 \\ 0.75<I_{L} \leqslant 1 \\ 0.50<I_{L} \leqslant 0.75 \\ 0.25<I_{L} \leqslant 0.50 \\ 0<I_{L} \leqslant 0.25 \\ I_{L} \leqslant 0 \end{gathered}$	$\begin{gathered} 21 \sim 38 \\ 38 \sim 53 \\ 53 \sim 68 \\ 68 \sim 84 \\ 84 \sim 96 \\ 96 \sim 102 \end{gathered}$	$\begin{gathered} 21 \sim 38 \\ 38 \sim 53 \\ 53 \sim 66 \\ 66 \sim 82 \\ 82 \sim 94 \\ 94 \sim 104 \end{gathered}$
红黏土		$\begin{aligned} & <a_{w} \leqslant 1 \\ & <a_{w} \leqslant 0.7 \end{aligned}$	$\begin{aligned} & 12 \sim 30 \\ & 30 \sim 70 \end{aligned}$	$\begin{aligned} & 12 \sim 30 \\ & 30 \sim 70 \end{aligned}$
粉土	稍密 中密 密实	$\begin{gathered} E>0.9 \\ 0.75 \leqslant e \leqslant 0.9 \\ e<0.75 \end{gathered}$	$\begin{aligned} & 24 \sim 42 \\ & 42 \sim 62 \\ & 62 \sim 82 \end{aligned}$	$\begin{aligned} & 24 \sim 42 \\ & 42 \sim 62 \\ & 62 \sim 82 \end{aligned}$
粉细砂	稍密 中密 密实	$\begin{gathered} 10<N \leqslant 15 \\ 15<N \leqslant 30 \\ N>30 \end{gathered}$	$\begin{aligned} & 22 \sim 46 \\ & 46 \sim 64 \\ & 64 \sim 86 \end{aligned}$	$\begin{aligned} & 22 \sim 46 \\ & 46 \sim 64 \\ & 64 \sim 86 \end{aligned}$

续表

土的名称	土的状态		泥浆护壁钻 （冲）孔桩	干作业钻孔桩
中砂	中密 密实	$\begin{gathered} 15<N \leqslant 30 \\ N>30 \end{gathered}$	$\begin{aligned} & 53 \sim 72 \\ & 72 \sim 94 \end{aligned}$	$\begin{aligned} & 53 \sim 72 \\ & 72 \sim 94 \end{aligned}$
粗砂	中密 密实	$\begin{gathered} 15<N \leqslant 30 \\ N>30 \end{gathered}$	$\begin{gathered} 74 \sim 95 \\ 95 \sim 116 \end{gathered}$	$\begin{gathered} 76 \sim 98 \\ 98 \sim 120 \end{gathered}$
砾砂	稍密中密（密实）	$\begin{gathered} 5<N_{63.5} \leqslant 15 \\ N_{63.5}>15 \end{gathered}$	$\begin{aligned} 50 & \sim 90 \\ 116 & \sim 130 \end{aligned}$	$\begin{gathered} 60 \sim 100 \\ 112 \sim 130 \end{gathered}$
圆砂，角砾	中密，密实	$N_{63.5}>10$	$135 \sim 150$	$135 \sim 150$
碎石，卵石	中密，密实	$N_{63.5}>10$	$140 \sim 170$	$150 \sim 170$
全风化软质岩	－	$30<N \leqslant 50$	$80 \sim 100$	$80 \sim 100$
全风化硬质岩	－	$30<N \leqslant 50$	$120 \sim 140$	$120 \sim 150$
强风化软质岩	－	$N_{63.5}>10$	$140 \sim 200$	$140 \sim 220$
强风化硬质岩	－	$N_{63.5}>10$	$160 \sim 240$	$160 \sim 260$

注： 1 对于尚末完成自重固结的填土和以生活垃圾为主的杂填土，不计算其侧阻力；
$2 a_{w}$ 为含水比，$a_{w}=w / w_{l}, w$ 为土的天然含水量，w_{l} 为土的液限；
$3 N$ 为标准贯人击数，$N_{63.5}$ 为重型圆锥动力触探击数；
4 全风化，强风化软质岩和全风化，强风化硬质岩系指其母岩分别为 $f_{\mathrm{rk}} \leqslant 15 \mathrm{MPa}, ~ f_{\mathrm{rk}}>30 \mathrm{MPa}$ 的岩石。

表 4．3．3－2 桩的极限端阻力标准值 $q_{p k}(\mathrm{kPa})$

土的名称	土的状态		预应力混凝土管桩
黏性土	软塑	$0.75<I_{L} \leqslant 1$	$210 \sim 850$
	可塑	$0.50<I_{L} \leqslant 0.75$	$850 \sim 1700$
	硬可塑	$0.25<I_{L} \leqslant 0.50$	$1500 \sim 2300$
	硬塑	$0<I_{L} \leqslant 0.25$	$2500 \sim 3800$

续表

土的名称	土的状态		预应力混凝土管桩
粉土	中密 密实	$\begin{gathered} 0.75 \leqslant e \leqslant 0.9 \\ e<0.75 \end{gathered}$	$\begin{gathered} 950 \sim 1700 \\ 1500 \sim 2600 \end{gathered}$
粉砂	稍密	$10<N \leqslant 15$	$1000 \sim 1600$
	中密，密实	$N>15$	$1400 \sim 2200$
细砂	中密，密实	$N>15$	$2500 \sim 4000$
中砂	中密，密实	$N>15$	$4000 \sim 6000$
粗砂	中密，密实	$N>15$	$5700 \sim 7500$
砾砂	中密，密实	$N>15$	$6000 \sim 9500$
圆砂，角砾	中密，密实	$N_{63.5}>10$	$7000 \sim 10000$
碎石，卵石	中密，密实	$N_{63.5}>10$	$8000 \sim 11000$
全风化软质岩	－	$30<N \leqslant 50$	$4000 \sim 6000$
全风化硬质岩	－	$30<N \leqslant 50$	$5000 \sim 8000$
强风化软质岩	－	$N_{63.5}>10$	$6000 \sim 9000$
强风化硬质岩	－	$N_{63.5}>10$	$7000 \sim 11000$
中风化软质岩	－	－	$8000 \sim 12000$

注： 1 碎石类土中桩的 q_{pk} 取值，宜综合考虑土的密实度，桩端进入持力层的深径比 h_{d} / d ，土愈密实，h_{d} / d 愈大，取值愈高；
2 全风化，强风化软质岩和全风化，强风化硬质岩系指其母岩分别为 $f_{\mathrm{rk}} \leqslant 15 \mathrm{MPa}, ~ f_{\mathrm{rk}}>30 \mathrm{MPa}$ 的岩石。

表 4．3．3－3 嵌岩段侧阻和端阻综合系数 ζ_{r}

嵌岩深径比	0	0.5	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0
极软岩，软岩	0.72	0.96	1.14	1.42	1.62	1.78	1.88	1.96	1.99	2.04
较硬岩，坚硬岩	0.54	0.78	0.97	1.08	1.20	1.25	-	-	-	-

注： 1 极软岩，软岩指 $f_{\mathrm{rk}} \leqslant 15 \mathrm{MPa}$ ，较硬岩，坚硬岩指 $f_{\mathrm{rk}}>30 \mathrm{MPa}$ ，介于二者之间可内插取值；
2 为桩身嵌岩深度，当岩面倾斜时，以坡下方嵌岩深度为准，当为非表列值时，ζ_{r} 可内插取值。

4．3． 4 预成孔植桩桩基轴心受压时，桩身正截面受压承载力应满足下式要求：

$$
\begin{equation*}
N \leqslant \psi_{\mathrm{c}} f_{\mathrm{c}} A_{\mathrm{pc}} \tag{4.3.4}
\end{equation*}
$$

式中：N ——荷载效应基本组合下的桩顶轴向压力设计值（ kN ）；
ψ_{c} ——工作条件系数， $0.85 \sim 0.90$ ；
f_{c} ——桩身混凝土轴心抗压强度设计值（ kPa ）；
$A_{\mathrm{pc}} —$ —预应力高强混凝土空心桩桩身横截面净面积 $\left(\mathrm{m}^{2}\right)$ 。
4．3．5 当计算桩身压屈，桩侧负摩阻力，桩基础沉降时，应符合现行行业标准《建筑桩基技术规范》JGJ 94 的有关规定。
4．3． 6 桩基承台计算应按现行行业标准《建筑桩基技术规范》 JGJ 94 的有关规定执行，桩基坚向反力宜全部由预应力高强混凝土空心桩承担，承台受冲切计算时桩径宜按预应力高强混凝土空心桩直径计算。
4．3． 7 初步设计时，群桩基础及其基桩的抗拔极限承载力的估算应符合下列规定：

1 群桩呈非整体破坏时，基桩的抗拔极限承载力标准值可

按下式估算：

$$
\begin{equation*}
T_{\mathrm{uk}}=u_{\mathrm{d}} \sum \lambda_{\mathrm{i}} q_{\mathrm{sk}} l_{i} \tag{4.3.7-1}
\end{equation*}
$$

式中：T_{uk} —群桩呈非整体破坏时基桩抗拔极限承载力标准值 (kN) ；
λ_{i} ——抗拔系数，可按表 4．3．7取值；
u_{d} ——预应力高强混凝土空心桩周长（ m ）。
表 4．3．7 抗拔系数

土类	抗拔系数 λ_{i}
砂土	$0.50 \sim 0.70$
黏性土，粉土	$0.70 \sim 0.80$

注：当长径比 l / d 小于 20 时，抗拔系数取小值。
2 群桩呈整体破坏时，基桩的抗拔极限承载力标准值可按下式计算：

$$
\begin{equation*}
T_{\mathrm{gk}}=\frac{1}{n} u_{l} \sum \lambda_{\mathrm{i}} q_{\mathrm{sik}} l_{i} \tag{4.3.7-2}
\end{equation*}
$$

式中：T_{gk} ——群桩呈整体破坏时基桩抗拔极限承载力标准值 (kN) ； u_{l} ——桩群外围周长（ m ）。
4．3．8 承受坚向上拔力作用的预应力高强混凝土空心桩应进行预应力钢筋抗拉强度，端板针固孔抗剪强度，接桩连接处强度，管腔内填芯微膨胀混凝土深度及填芯混凝土纵向钢筋强度等验算，并应按最不利处确定桩的抗拔承载力，强度验算应符合现行行业标准《预应力混凝土管桩技术标准》JGJ／T 406 的有关规定。
4．3． 9 承受坚向上拔力作用的预应力高强混凝土空心桩的裂缝

控制计算应按现行行业标准《预应力混凝土管桩技术标准》JGJ／T 406 的有关规定执行。
4．3． 10 水平受荷的预成孔植桩桩基设计应按现行行业标准《建筑桩基技术规范》JGJ 94 的有关规定执行。

4.4 基坑支护

4．4．1 采用预成孔植桩的基坑支护设计应符合现行行业标准《建筑基坑支护技术规程》JGJ 120 的规定，计算采用的桩身直径应取预应力高强混凝土空心桩直径。
4．4．2 以下基坑工程不宜采用预应力高强混凝土空心桩作支护悬臂桩：

1 深厚软土基坑工程；
2 开挖深度大于 6 m 的膨胀性土或填土基坑工程；
3 支护结构挠曲变形计算结果大于 30 mm 的基坑工程。
4．4．3 采用预应力高强混凝土空心桩作支护结构时，应符合下列规定：

1 悬臂式支护适用于基坑深度小于 6 m ；
2 双排桩支护适用于基坑深度小于 9 m ；
3 排桩＋针杆或排桩＋内支撑联合支护适用于基坑深度小于 12 m 。
4．4．4 基坑支护的预制桩宜选混合配筋高强混凝土空心桩；对于采用悬臂支护桩的基坑工程，宜选用直径大于或等于 500 mm的混合配筋高强混凝土空心桩，且不宜接桩；对于排桩＋针杆或排桩＋内支撑联合支护的基坑工程，空心桩直径不宜小于 500 mm 。

4． 4.5 预成孔植桩的基坑监测应符合国家现行标准《建筑基坑支护技术规程》JGJ 120 及《建筑基坑工程监测技术标准》 GB 50497 的有关规定。

