摄影测量与遥感

主 编 王 涛 刘建国
副主编 白芝勇 刘 攀 谢忠俍
主 审 张福荣 胡俊勇

西南交通大学出版社
－成 都•

图书在版编目（C \｜P ）数据
摄影测量与遥感：含实训指导书． 1 ，摄影测量与遥感／王涛，刘建国主编．一成都：西南交通大学出版社， 2023.2

ISBN 978－7－5643－9125－6
I．（1）摄… II．（1）王…（2）刘… III．（1）摄影测量－高等职业教育－教材（2）遥感技术－高等职业教育－教材 IV．（1）P23（2）TP7

中国国家版本馆 CIP 数据核字（2023）第 009530 号

Sheying Celiang yu Yaogan（Han Shixun Zhidaoshu）

摄影测量与遥感（含实训指导书）

责任编辑／王 旻
主 编／王 涛 刘建国 特邀编辑／王玉珂
封面设计／曹天擎

西南交通大学出版社出版发行
（四川省成都市金牛区二环路北一段 111 号西南交通大学创新大厦 21 楼 610031）发行部电话：028－87600564
网址：http：／／www．xnjdcbs．com
印刷：四川森林印务有限责任公司

成品尺寸 $185 \mathrm{~mm} \times 260 \mathrm{~mm}$
总印张 20.5 总字数 507 千
版次 2023 年 2 月第 1 版 印次 2023 年 2 月第 1 次
书号 ISBN 978－7－5643－9125－6
套价（全2册）56．00元

课件咨询电话：028－87600533
图书如有印装质量问题 本社负责退换
版权所有 盗版必究 举报电话：028－87600562

前 言

本教材自2018年8月出版以来，作为高职院校测绘地理信息类专业＂摄影测量与遥感＂与＂摄影测量基础＂课程的教材，历经 4 届学生和有关读者使用。教材编写团队结合教学情况和读者反馈意见，在教材第一版基础上，对部分内容进行了修订和补充。具体如下：

1．增加了项目三：双像立体测图的相关内容，具体包括立体像对中的点，线，面认识和双向立体测图原理等内容；另外，将第一版教材项目二数字航空影像定向处理部分的内容按教学需要调整到了本部分。

2．对第一版教材项目三：解析空中三角测量部分进行了补充，增加了解析空中三角测量的软件实现（以 VirtuoZo 软件为例）内容。

3．修改了第一版项目八中遥感技术应用中的部分内容，更新了相应的遥感影像。
4．此次修订增加了数字摄影测量产品制作的内容，主要包括：数字影像的认识， 4 D 产品制作，三维数字模型制作，三维数据采集与制图等内容。

5．此次修订增加了数字教学资源，并以二维码形式呈现在对应的学习任务中，便于学生自主学习。对原教材复习思考题部分进行了补充完善，一是增加了习题数量；二是扩充了题型种类。

修订后教材的内容体系更适合高职院校技术技能人才培养目标定位，适应性更强，更利于学生实践操作和综合应用能力培养。

本教材由陕西铁路工程职业技术学院张福荣教授和陕西天润科技股份有限公司胡俊勇正高级工程师主审，陕西铁路工程职业技术学院王涛和甘肃交通职业技术学院刘建国主编，并负责全书统稿。具体编写分工如下：项目一，项目三，项目四，项目八，项目九和附录由王涛编写；项目二由甘肃建筑职业技术学院刘攀编写；项目五由李燕敏编写；项目六由谢忠佷编写；项目七由中铁一局五公司白芝勇编写；项目十的任务一，任务二由甘肃交通职业技术学院刘建国编写，任务三，任务四由曾庆伟编写。

本教材在修订中参考了大量相关专业文献（包括纸质版和电子版），引用了部分内容，在此向原文作者表示感谢！同时对西南交通大学出版社为本书出版所做的辛勤工作表示感谢！

由于编写团队水平所限，书中疏漏及不妥之处，敬请读者批评指正。

数字资源目录

序号	项 目	任 务	资源名称	资源类型	页码
1	项目1摄影测量与遥感认识	任务 1.1 摄影测量与遥感的定义和任务	摄影测量的认识	PPT	001
2			摄影测量的认识	微课	001
3		任务1．2 摄影测量与遥感的发展	遥感的认识	PPT	003
4			遥感的认识	微课	003
5			摄影测量与遥感的关系	PPT	003
6			摄影测量与遥感的关系	微课	003
7		任务1．3 遥感主要应用领域及与 3 S 技术	遥感技术与测绘的关系	PPT	005
8	项目2 数字摄影测量	任务 2.1 航空影像的获取及相关要求	航摄像片的投影方式	PPT	009
9			航摄像片的投影方式	微课	009
10			影像获取的要求	PPT	009
11			影像获取的要求	微课	009
12		任务 2.2 航摄像片的内，外方位元素	航摄像片的内外方位元素	PPT	015
13			航摄像片的内外方位元素	微课	015
14		任务2．3 中心投影构像方程及单张像片空间后方交会	摄影测量的共线方程	PPT	016
15		任务 2.4 摄影测量常用坐标系及图形分幅要求	摄影测量坐标系	PPT	018
16		任务 2.5 航摄像片与地形图的区别	航摄像片的比例尺	PPT	025
17	项目3双像立体测图	任务3．1 立体观测与量测	立体观察与立体量测	PPT	028
18			立体坐标量测仪认识	PPT	028
19			航空摄影机的认识	PPT	028
20			透视变换中的点，线，面	PPT	028
21		任务3．2 双像立体测图的原理	双像立体测图	PPT	032
22			像点位移与方向偏差	PPT	032
23			摄影测量内业处理	PPT	032
24		任务 3.3 数字摄影测量的数据分析与准备	数据准备，测区建立	微课	036
25		任务 3.4 数字航空影像的定向处理	模型内定向	微课	039
26			模型相对定向	微课	039
27			模型绝对定向	微课	039

续表

序号	项 目	任 务	资源名称	资源类型	页码
28	项目 4解析空中三角测量	任务 4.2 解析空中三角测量的 3种方法	解析空中三角测量	PPT	049
29		任务 4.3 解析空中三角测量的作业过程	解析空中三角测量的作业过程	PPT	055
30	项目5 数字摄影测量 产品制作	任务 5.1 数字影像的认识	无人机的认识	PPT	064
31			无人机测绘系统的组成	PPT	064
32			无人机测绘技术的应用	PPT	064
33		任务 5.2 数字高程模型的认识	4D 数据产品认识	PPT	065
		与制作	4D 数据产品认识	微课	065
34		任务 5.4 数字线划图的认识与制作	4D 产品生产	PPT	072
35		三维数字模型图制作	三维模型制作（－）	微课	078
36			三维模型制作（二）	微课	078
37	项目 6摄影测量的外业工作	任务 6.1 摄影测量工作的内容和过程	数字摄影测量的外业工作	PPT	094
38			像控点测量	PPT	094
39		任务6．2 影像的判读	影像的判读	PPT	097
40		务6．3 影像的调绘	影像的调绘	PPT	100
41			新增地物的补调与补测方法	PPT	100
42	项目7遥感图像认识与获取	任务7．1 遥感技术的物理基础	电磁波谱与电磁辐射	PPT	105
43			电磁波谱与电磁辐射	微课	105
44			太阳辐射及大气对辐射的影响	PPT	105
45			太阳辐射及大气对辐射的影响	微课	105
46			地球的辐射与地物波谱	PPT	105
47			常见的几种地物类型波谱特征	PPT	105
48		任务 7.2 遥感平台和遥感影像的特征	遥感与遥感技术系统	PPT	113
49			遥感的特性与分类	PPT	113
50			遥感的特性与分类	微课	113
51		任务7．3 遥感图像的获取	遥感技术的发展概况	PPT	117
52	项目 8遥感数字图像处理	任务8．3 遥感图像裁剪与分割	遥感影像裁切	微课	130
53		任务8．4 遥感图像辐射校正	遥感图像的辐射校正	PPT	133

续表

序号	项 目	任 务	资源名称	资源类型	页码
54	项目 8遥感数字图像处理	任务8．5 遥感图像几何校正	遥感图像几何畸变	PPT	139
55			遥感图像几何校正	PPT	139
56			遥感图像几何校正	微课	139
57		任务8．6 遥感图像正射校正	遥感图像正射校正	微课	147
58		任务8．7 遥感图像投影变化	遥感影像投影变换	微课	151
59	项目 9遥感数字图像解析	任务9．2 遥感图像增强处理	遥感图像增强的光学方法	PPT	162
60			遥感图像数字增强 （直方图法）	PPT	162
61			遥感图像数字增强 （对比度法）	PPT	162
62			遥感图像增强 （平滑与锐化）	PPT	162
63			遥感图像增强 （彩色增强）	PPT	162
64		任务9．3 遥感图像的配准，融合	遥感图像的配准	PPT	165
65			遥感影像融合处理	微课	165
66		任务9．4 遥感图像的镶嵌处理	遥感影像镶嵌处理	微课	170
67		任务9．5 遥感图像的分类	遥感图像的计算机分类	PPT	173
68			遥感图像的监督分类	PPT	173
69			影像监督分类	微课	173
70			遥感图像的无监督分类	PPT	173
71	项目 10遥感专题图制作	任务10．2 遥感专题图制作	遥感专题图制作	PPT	188
72		任务10．4 遥感技术的应用	高分辨率遥感在城市规划中的应用	PPT	201
73			高分辨率遥感技术用于基础数据更新	PPT	201
74			高分辨率遥感技术用于地震灾害救援和重建图制作	PPT	201
75	附录	附录2 常用遥感图像处理软件简介	ENVI 简介	微课	208
76		＂摄影测量与遥感实训＂相关规范及软件操作教程	VirtuoZo 操作手册简化版	PDF	$\begin{aligned} & \text { 实训 } \\ & \text { 手册 } \\ & 097 \end{aligned}$
77			Pix4Dmapper 操作手册简化版	PDF	
78			ERDAS IMAGINE 操作手册简化版	PDF	
79			航空摄影测量相关规范	PDF	

目 录

项目 1 摄影测量与遥感认识 001
任务 1.1 摄影测量与遥感的定义和任务 001
任务1．2 摄影测量与遥感的发展 003
任务 1.3 遥感主要应用领域及 3 S 技术 005
复习思考题 008
项目2 数字摄影测量 009
任务 2.1 航空影像的获取及相关要求 009
任务 2.2 航摄像片的内，外方位元素 015
任务 2.3 中心投影构像方程及单张像片空间后方交会 016
任务 2.4 摄影测量常用坐标系统及图形分幅要求 018
任务 2.5 航摄像片与地形图的区别 025
复习思考题 026
项目3 双像立体测图 028
任务3．1 立体观察与量测 028
任务3．2 双像立体测图的原理 032
任务 3.3 数字摄影测量的数据分析与准备 036
任务 3.4 数字航空影像的定向处理 039
复习思考题 045
项目4 解析空中三角测量 047
任务 4.1 解析空中三角测量概述 047
任务 4.2 解析空中三角测量的 3 种方法 049
任务4．3 解析空中三角测量的作业过程 055
复习思考题 062
项目5 数字摄影测量产品制作 063
任务 5.1 数字影像的认识 064
任务 5.2 数字高程模型认识与制作 065
任务 5.3 数字正射影像的认识与制作 068
任务 5.4 数字线划图的认识与制作 072
任务5．5 数字栅格地图的认识与制作 075
任务 5.6 三维数字模型图制作 078
任务5．7 三维数据采集与制图 089
复习思考题 093
项目 6 摄影测量外业工作 094
任务 6.1 摄影测量工作的内容和过程 094
任务 6.2 影像的判读 097
任务 6.3 影像的调绘 100
复习思考题 103
项目 7 遥感图像认识与获取 104
任务 7.1 遥感技术的物理基础 105
任务 7.2 遥感平台与遥感影像的特征 113
任务 7.3 遥感图像的获取 117
复习思考题 122
项目 8 遥感数字图像处理 123
任务 8.1 遥感图像的表示方式 123
任务 8.2 ERDAS 遥感图像处理软件的认识 127
任务 8.3 遥感图像裁剪与分割 130
任务 8.4 遥感图像的辐射校正 133
任务 8.5 遥感图像的几何校正 139
任务 8.6 遥感图像的正射校正 147
任务 8.7 遥感图像的投影变换 151
复习思考题 154
项目 9 遥感数字图像解译 155
任务 9.1 遥感图像的目视解译 155
任务 9.2 遥感图像的增强处理 162
任务 9.3 遥感图像的配准，融合 165
任务 9.4 遥感图像的镶嵌处理 170
任务 9.5 遥感图像的分类 173
复习思考题 185
项目 10 遥感专题图制作 186
任务 10.1 遥感专题图提取 186
任务 10.2 遥感专题图制作 188
任务10．3 4D 产品质量检查 195
任务 10.4 遥感技术的应用 201
复习思考题 204
附 录 205
附录1 数字摄影测量系统简介 205
附录2 常用遥感图像处理软件简介 208
附录3 遥感图像处理过程 211
参考文献 213

项目 1 摄影测量与遥感认识

项目描述

现代航天技术和计算机技术的飞速发展，使得摄影测量的应用领域更加广阔。可以说，只要物体能够被拍摄成影像，就可以使用摄影测量技术，以解决某一方面的问题。摄影测量是根据被摄物体在像片上的构像规律及物体与对应影像之间的几何和数学关系，获取被摄物体的几何属性和物理属性。

遥感是 20 世纪 60 年代初发展起来的一门新兴综合性探测技术。最先开始的为航空遥感， 1972年美国发射第一颗陆地卫星标志着航天遥感时代的开始。经过几十年的飞速发展，目前遥感技术已广泛应用于资源环境，气象，水文，地理信息等领域，成为一门实用，先进的空间探测技术。遥感技术是及时获取地理信息的一个重要手段，遥感信息准确客观地记录了地表地物的电磁波信息特征，是地理信息分析的一种重要数据源。

（C）教学目标

1．能力目标

- 能够描述摄影测量，遥感的定义，任务；
- 能够描述摄影测量，遥感的组成及特点；
- 能够描述摄影测量和遥感之间的区别和联系。

2．知识目标

- 了解摄影测量和遥感的发展；
- 了解摄影测量和遥感的组成及特点。

3．素质目标

- 具备一定阅读总结能力；
- 具备一定的查阅，整理资料能力。

任务 1.1 摄影测量与遥感的定义和任务

1．1．1 摄影测量的定义

摄影测量学是通过影像研究信息的获取，处理，提取和成果表达的一门信息科学。1988年国际摄影测量与遥感协会（ISPRS）在日本京都第 16 届大会上对摄影测量与遥感的定义是：

摄影测量与遥感是对非接触传感器系统获得的影像及其数字表达进行记录，量测和解译，从而获得自然物体和环境的可靠信息的一门工艺，科学和技术。

摄影测量的主要任务之一是用于测制各种比例尺的地形图，建立地形数据库，并为各种地学信息系统提供基础数据。摄影测量的主要特点是在像片（航片）上进行量测和判读，无须接触物体本身，而且可高效率获得摄影测量瞬间物体的影像信息。

摄影测量学可从不同角度进行分类。按摄影距离的远近分，可分为航天摄影测量，航空摄影测量，地面摄影测量，近景摄影测量和显微摄影测量；按用途分，有地形摄影测量和非地形摄影测量；按处理的技术手段分，有模拟摄影测量，解析摄影测量和数字摄影测量。

1．1．2 遥感的定义

1．遥感概念

遥感泛指对事物表面的遥远感知。目前遥感不单单是一种方法，而应该理解为一种技术，一种获取地球信息的技术（当然也可以获取其他星球的信息）。它是一种远离目标，在不与目标对象直接接触的情况下，通过某种平台上装载的传感器获取其特征信息，然后对所获取的信息进行提取，判定，加工处理及应用分析的综合性技术。

遥感技术与现代物理学，空间技术，计算机技术，数学和地理学密切相关。遥感技术已广泛应用于各种领域，成为地球环境资源调查和规划不可缺少的有效手段。

遥感是 20 世纪 60 年代兴起并迅速发展起来的一门综合性探测技术，它促使摄影测量技术产生革命性的变化，从以飞机为运载工具的航空遥感，发展到以航天飞机，人造地球卫星等为运载平台的航天遥感，极大地拓展了人们的观测领域，形成了对地球资源和环境进行探测和监测的立体观测体系；同时，它在城市规划，环境保护，地质勘测，农业和林业以及军事领域的广泛应用，产生了十分可观的经济效益和显著的社会效益。

2．遥感数据获取过程

图1．1 为一个遥感数据获取过程的示意图，它包括信息的采集，接收存储，处理以及信息提取和应用。

图 1.1 遥感数据获取原理
（1）信息采集。传感器是收集，量测和记录遥远目标信息的仪器，是遥感技术系统的核心。传感器一般由信息收集，探测器，信息处理和信息输出 4 部分组成，如图 1.2所示。

图 1.2 传感器的组成
传感器接收地物反射或发射的电磁波信号并将其转化为电信号。信息采集部分的主角就是传感器，搭载传感器的平台可以是卫星，飞机，甚至是地面平台。
（2）接收存储。卫星影像的接收和存储是在遥感卫星地面站中完成的，地面站包括接收站，数据处理中心和光学处理中心，我国在1986年与美国合作建立了中国卫星地面接收站。收集的数据通过数模转换变成数字数据，目前的影像数据都以数字形式保存，以前由于计算机技术的限制，采用磁带或者胶片形式存储。现在随着计算机技术的发展，保存格式也趋于标准化，大多采用 tif 或者 geotif 的格式。

从数据的文件内部读写格式上分，可分为 3 种格式，即 BSQ，BIL，BIP。BSQ 是按波段保存，也就是一个波段保存后接着保存第二个波段；BIL 是按行保存，就是保存第一个波段的第一行后接着保存第二个波段的第一行，依次类推；BIP 是按像元保存，即先保存第一个波段的第一个像元，之后保存第二波段的第一个像元，依次保存。
（3）处理。目前，遥感影像的处理都是基于数字的，所以产生的新的一门科学就是遥感数字图像处理，它是依靠计算机硬件技术的发展以及遥感图像处理软件的发展而发展起来的。详细内容将在后面介绍。
（4）信息提取。信息提取的主要目的就是从影像上提取有用的信息，这个过程是在前面的基础上进行的。
（5）应用。不同的行业有着自己的应用规范，例如，测绘部门应用遥感技术获取地形模型以及地物位置信息；农业部门应用遥感技术获取的是农作物的信息；林业部门可以从遥感影像上获取林业的分布，蓄积量等信息。

任务 1.2 摄影测量与遥感的发展

1．2．1 摄影测量学的发展

摄影测量的发展经历了模拟摄影测量，解析摄影测量和数字摄影测量 3 个阶段。
（1）模拟摄影测量的基本原理是利用光学／机械投影方法实现摄影过程的反转，用两个或多个投影器模拟摄影机摄影时的位置和姿态，构成与实际地形表面成比例的几何模型，通过

对该模型的量测得到地形图和各种专题图。
（2）解析摄影测量是以电子计算机为主要手段，通过对摄影像片的量测和解析计算方法的交会方式，来研究和确定被摄物体的形状，大小，位置，性质及其相互关系，并提供各种摄影测量产品的一门科学。
（3）数字摄影测量是基于摄影测量的基本原理，通过对所获取的数字或数字化影像进行处理，自动（半自动）提取被摄对象用数字方式表达的几何与物理信息，从而获得各种形式的数字产品和目视化产品。

摄影测量 3 个发展阶段的各自特点见表1．1。
表1．1 摄影测量 3 个发展阶段的各自特点

发展阶段	原始资料	投影方式	仪器类型	操作方式	产品类型
模拟摄影测量	像片	物理投影	模拟测图仪	人工操作	模拟产品
解析摄影测量	像片	数字投影	解析测图仪	机助作业员操作	模拟产品 数字产品
数字摄影测量	数值化影像 数字影像	数字投影	数字计算机 摄影测量工作站	自动化操作＋ 人工干预	模拟产品 数字产品

1．2．2 遥感技术的发展历程

最初，照相机，气球，飞机构成初期遥感技术系统。1962年在美国密歇根大学召开的第一次国际环境遥感讨论会上，美国海军研究局的 Eretyn Pruitt（伊•普鲁伊特）首次提出＂Remote Sensing＂一词，会后被普遍采用至今。第二次世界大战中的航空侦察促进了航空摄影技术的发展。 20 世纪 60 年代以来，苏美空间技术竞相发展，分别发射了一系列的空间计划卫星，促进了航天遥感技术的发展。 20 世纪 70 年代，空间技术转向为民用服务，地球资源技术卫星诞生。 20 世纪 80 年代，地球资源技术卫星的传感器技术不断提高。 20 世纪 90 年代，除美苏外，其他国家均发射了各种资源卫星。目前，高分辨率的商业卫星发展迅速。

遥感的发展是伴随传感器的发展而发展的，所以，要了解遥感的发展，就需要知道以前或者目前天上邀游的卫星。例如，美国的 Landsat 系列，法国的 Spot 系列，美国的 IKONOS系列，美国的 Quikbird 系列，美国的 Orbview 系列，美国的 EOS 系列，加拿大的 Radarsat系列，俄罗斯的 RESURS－DK1 系列和印度的 IRS 系列。

目前使用非常广的数据源主要有 SPOT4，5，Landsat5，7，IKONOS，Quikbird，ALOS，俄罗斯的 DK－1，Cartosat－1（P5 ），ResourceSat（P6 ）。

现在，遥感正处于蓬勃发展期，有人把它比作 9 点钟的太阳。这是因为，在计算机和其他电子技术未得到发展的时候，遥感只是出于军事侦察和摄影爱好。近年来，由于计算机和卫星技术的突破性发展，遥感才得到了重视并快速发展。

高分辨率传感器，微波遥感和高光谱遥感应用前景广阔，新型的遥感应用将逐步增加，

遥感将进一步从军事应用转到商业化应用。

任务 1.3 遥感主要应用领域及 3 S 技术

1．3．1 遥感主要应用领域

1．外层空间遥感

利用探空火箭，人造卫星，人造行星和宇宙飞船等航天运载工具，可对外层空间进行遥感探测，在不久的将来，外层空间遥感将会取得丰硕的成果。

2．大气遥感

探测仪器不和大气介质直接接触，在一定距离之外，感知大气的物理状态，化学成分及其随时空的变化，这样的探测技术与方法称为大气遥感。

3．海洋遥感

海洋遥感以海洋和海岸带作为研究与监测对象，其内容涉及海洋学的多个领域，如利用遥感技术监测海洋的环流，表面温度，风系统，波浪，生物活动等。卫星海洋遥感已成为海洋科学的新兴分支。在未来几年，我国将发射一系列海洋卫星，实现对我国及周边海域甚至全球海洋的遥感动态监测。

4．陆地遥感

陆地遥感是遥感技术应用最早，应用范围最为广阔深人的一个方面。陆地遥感主要为资源与环境遥感。

5．军事遥感

遥感技术是现代战争的＂制高点＂，侦察卫星可从太空轨道上对目标实施侦察，监视或跟踪，以搜集地面，海洋或空中目标的军事情报。

1．3．2 3 S 技术

＂3S＂技术是遥感技术（Remote Sensing，RS），地理信息系统（Geographical Information System，GIS ），全球定位系统（Global Positioning System，GPS）这 3 种技术的统称。 3 S 带上了＂技术＂两个字，就不单单指的是三者的合成，既然它是一种技术，就应该是三者或者两者之间技术上的渗透。

遥感技术的实际操作虽然很复杂，但其结果在我们每个人的生活中天天都能用到。例如 ＂天气预报＂中所播放的＂卫星气象云图＂就是由＂气象卫星＂拍摄的＂云＂的图像。气象观测只不过是遥感技术众多应用的一个领域。

据统计，信息总量中有 85% 的信息是与地理位置有关的信息。与地理位置有关的信息，就叫地理信息。这样的信息相当广泛，如耕地的分布，林地的分布，城镇的分布，楼房等建筑物的分布，道路，河流，海岸，人口，医院，学校，企事业单位，管线，派出所，商店，井位，门牌，电闸，水表，开关等，只要能用＂位置＂去描述的东西，都属于＂地理信息＂，

遥感所提取的信息也全部包含在地理信息之中。
全球定位系统（GPS），由处于 2 万千米高度的 6 个轨道平面中的 24 颗卫星组成。此系统用于在任何时间，向地球上任何地方的用户提供高精度的位置，速度，时间信息，或给用户提供其邻近者的这类信息。

通常情况下，一张像片是没有坐标的，而像片上的信息，特别是遥感图像上的信息，是需要定出位置的，只有＂有位置的信息＂，才能成为地理信息。那么怎样来给遥感像片确定位置呢？有一种方便，快捷的手段，就是＂全球卫星＂定位系统。该系统是由太空中的 24 颗 GPS 卫星构成的，但只需其中 3 颗卫星，就能迅速确定您在地球上的位置。在确定位置时，仅需要一台与手机大小一样的＂卫星定位仪＂（或称手持 GPS 接收机）就可以实现位置确定。

可以这样理解，遥感给地理信息系统提供数据源，遥感得到的信息利用地理信息的方法分析； GPS 在遥感图像的几何校正或者图像解译时，或野外调查时提供定位和导航，遥感给 GPS 的导航提供底图数据；GIS 给 GPS 提供数据显示以及路径分析，GPS 给 GIS 提供位置信息以及导航路线信息等。也就是说，RS 和 GPS 给 GIS 提供数据源，GIS 给 RS 和 GPS 提供分析途径。

1．3．3 3 S 技术的应用及发展

随着技术的不断发展，将遥感，全球卫星定位系统和地理信息系统紧密结合起来的＂3S＂技术已显示出更为广阔的应用前景。以 RS，GIS，GPS 为基础，将 RS，GIS，GPS 3 种独立技术中的有关部分有机集成起来，构成一个强大的技术体系，可实现对各种空间信息和环境信息的快速，机动，准确，可靠的收集，处理与更新。RS，GIS，GPS 的图示如图1．3～图1．5所示。

图1．3 遥感影像（RS）

图1．4 数字城市建设（GIS）

图1．5 GPS 定位卫星

1． $3 S$ 技术在精准农业中的应用

精准农业是近年来国际上农业科学研究的热点领域。在精准农业中，在定位采集地块信息的基础上，根据各地块土壤，水肥，作物病虫害，杂草，产量等在时间与空间上的差异，进行相适宜的耕种，施肥，灌水，用药，其目的是以合理的投入获得最好的经济效益，并保护环境，确保农业可持续发展。

通俗地说：精准农业就是利用 RS 作宏观监测；用 GPS 精确定位地面位置；用 GIS 将地面信息（地形，地貌，作物种类和长势，土壤质地和养分，水分状况等）进行储存，按区内要素的空间变量数据，精确设定最佳耕作，施肥，播种，灌溉，喷药等多种操作，变传统的粗放型经营为精细生产。例如，在喷洒农药时通过传感器获得不同田块不同程度病虫害的具

体数据，实地调整喷药量，对症下药，既能有效降低农业成本，使每一寸土地都得到最优化使用，使每一份资源都发挥出应有的作用，以最经济的投入获得最佳的产出；又能有效减少对环境的污染，保护农业的生态环境，实现可持续发展。

2． 3 S 技术在城市规划中的应用前景

（1）城市基本地形图更新。城市规划的基本条件就是大比例尺地形图，但传统的线划地图不仅建立周期长，更新困难，而且比较抽象，并从原始信息中篮去了很多环境成分。4D 产品包括数字线划地图（DLG），数字高程模型（DEM），数字栅格地图（DRG），数字正射影像图（DOM），是新一代测绘产品的标志，有着现势性强，更新速度快，信息含量丰富等优点，将转变传统地图的观念，加快数据更新，丰富表现手段，也是对传统测绘方法的现代化改造。
（2）现状调查与数据管理。城市规划的初始阶段就是现状调查，往往要耗费大量的人力，物力，财力，又难以做到实时，准确。运用 RS 技术可以迅速地进行城市地形地貌，湖泊水系，绿化植被，景观资源，交通状况，土地利用，建筑分布的调查；运用 GIS 技术则能将大量的基础信息和专业信息进行数据建库，实现空间信息和属性信息的一体化管理与可视化表现，提供方便的信息查询和统计工具，克服 CAD 辅助制图的局限性。
（3）现状评价与空间分析。利用多个时期的航空遥感影像图进行城市用地变迁动态研究，结合数理统计方法进行城市重心移动，离散度，紧凑度和放射状指数等形态测度评价；利用叠加分析，缓冲区分析，拓扑分析等工具进行商业服务设施和中小学的服务范围分析，交通可达性评价和建设条件适宜性评价。这些分析与评价有助于总结城市发展规律，发现存在的问题，增加空间分析的深刻性。
（4）交通调查与模拟分析。利用 GIS 进行城市交通小区出行分布的数据建库，可以对现状路网密度，出行距离和时间，交通可达性，公交服务半径进行合理性评价，结合专业软件能进行城市交通的规划预测，出行分布和流量分配，开展交通环境容量影响评价。利用遥感数据进行道路勘测设计，可以快速完成对路线所经区域的地形，地貌，河流，建筑以及交通网系的概要判读。利用虚拟现实技术和三库一体（影像数据库，矢量图形库，数字高程模型库）技术可以进行道路方案的仿真表现和环境模拟，实现全方位，立体化，多层次的规划和评价新模式。
（5）规划管理。基础信息和规划信息的集成建库将使规划设计与规划管理更紧密地结合起来，可以在 GIS 平台上开展电子报批和网上报批，提高指标核算的科学性，避免地区规划的前后矛盾和土地批租的＂一女两嫁＂。

3 S 技术的集成还促进了土地利用动态监测和规划执法检查，可以利用遥感卫星数据与历史数据进行复合分析，主动发现土地利用的变化靶区。用差分 GPS 技术精确测量土地利用的变化数据，再根据现场勘察资料，利用 GIS 技术进行准确详查，增加了监测的主动性，及时性和客观性。

未来，各大中城市建立城市地理信息系统将是必然趋势。目前北京，上海，广州等大城市均已提出建立数字城市的规划。 3 S 技术的应用，实现了城市各种历史，现状和规划信息的集成管理和实时更新处理，能够动态，快速，高精度，规范化地获取和存储城市的各种空间和属性信息；快速而方便地进行信息查询，检索和统计；有效和智能化地进行城市空间分析，

开展网络化的公众参与，提高了对城市发展的科学预见和动态监控水平。 3 S 技术的发展与应用将推动数字城市规划技术从定性到定量的飞跃和理论从经验到科学的转变。

運聂复习思考题

1．什么是摄影测量学？摄影测量的常见分类方法有哪些？
2．归纳总结摄影测量发展的各个阶段及其特点。
3．遥感的定义是什么？举例说明遥感技术有哪些应用领域。
4．简要说明遥感技术的发展历程。
5．什么是＂3S＂技术？三者之间有何联系？
6．单选题：测绘中经常提到的＂3S＂技术，不包括以下哪个选项？（ ）
A．GPS
B．GIS
C．RS
D．GPRS

7．多选题：摄影测量经历的发展阶段？
A．航空摄影测量
B．模拟摄影测量
C．解析摄影测量
D．近景摄影测量
E．数字摄影测量

