职业教育双高建设系列教材

动车组电机电器检修

主编 王金花 杨明明

西南交通大学出版社
－成 都

图书在版编目（C I P）数据

动车组电机电器检修／王金花，杨明明主编．—成都：西南交通大学出版社， 2023.3

ISBN 978－7－5643－9215－4
I ．（1）动 \cdots II．（1）王 \cdots（2）杨 \cdots III．（1）动车 - 电机 -检修（2）动车－电气设备－检修 IV．（1）U269

中国国家版本馆 CIP 数据核字（2023）第 048869 号

Dongchezu Dianji Dianqi Jianxiu

动车组电机电器检修

主 编／王金花 杨明明
责任编辑／何明飞
封面设计／吴 兵

西南交通大学出版社出版发行
（四川省成都市金牛区二环路北一段 111 号西南交通大学创新大厦 21 楼 610031）
发行部电话：028－87600564 028－87600533
网址：http：／／www．xnjdcbs．com
印刷：四川森林印务有限责任公司

成品尺寸 $185 \mathrm{~mm} \times 260 \mathrm{~mm}$
印张 15.75 字数 383 千
版次 2023 年 3 月第 1 版 印次 2023 年 3 月第 1 次

书号 ISBN 978－7－5643－9215－4
定价 45.00 元
课件咨询电话：028－81435775
图书如有印装质量问题 本社负责退换
版权所有 盗版必究 举报电话：028－87600562

前 言

我国旅客列车的发展历经绿皮车，红皮车，蓝皮车，白皮车（和谐号动车组），客车装备的发展速度已成倍增长。绿皮车（ 22 型）使用 J5 交流轴驱发电机，整流以后（DC 48 V ）通过 KP－2 A 控制柜为车内电扇，日光灯照明等供电；红皮车（25G）开始配备车内空调，由发电车（KD）通过综合控制柜供电（AC 380 V ）；蓝皮车（ 25 T ）由机车供电（ DC 600 V ），综合控制柜控制输入输出；白皮车（和谐号动车组）直接由接触网（AC $25 \mathrm{kV} / 50 \mathrm{~Hz}$ ）供电。

本书主要讲述动车组低压控制电器，高压电器，变压器，电机等动车组电机电器结构原理，使用维护，检修作业，故障诊断与应急处理等专业知识。书中收集整理了来自动车组检修生产一线的大量检修技术，职业标准，岗位作业标准，工艺流程，故障处理等第一手资料，并将其撰写成极具特色的记忆口决。

本书选取的内容遵循学习者认知规律，由易至难，从单一低压电器的认知检修到综合性电器的认知检修，培养学习者从单项检修技能到综合检修技能的形成。遵循学习者职业成长规律，由简单到复杂，在比较中学习，能力螺旋上升，有利于学习者构建自身的知识和能力体系，有利于促进学习者可持续发展能力的形成。本书可作为高等职业院校动车组检修技术专业群学生的教材，兼顾广大社会读者。

本书编写风格通俗生动，配有大量图片，语言简洁形象，脉络清晰，版式新颖，可读性强，配套资源丰富，在智慧职教 MOOC 学院开设有在线课程。

本书由武汉铁路职业技术学院王金花，杨明明担任主编，武汉铁路职业技术学院曾照平，蔡磊，李一平，曹毅，孟素英，邓命，李冰等多位老师参与编写。

本书在编写过程中参阅了大量的书籍，文献及国家标准，在此对原作者表示诚挚的谢意。
限于编者水平有限，书中难免有疏漏和不足之处，恳请广大读者提出宝贵意见，以便进一步修改和完善。

编 者

课程概述

目 录

第一章 概 论 1
第一节 电器的热稳定性 2
第二节 电器的动稳定性 5
第三节 电 弧 8
第四节 电接触 14
第五节 传动装置 22
习 题 27
第二章 动车组低压控制电器 29
第一节 接触器 29
第二节 继电器 39
第三节 智能电器 52
第四节 传感器 57
第六节 低压熔断器 80
第七节 主令电器 83
第八节 蓄电池 86
习 题 95
第三章 动车组高压电器 97
第一节 受电弓 97
第二节 主断路器 106
第三节 其他高压电器 110
习 题 135
第四章 动车组牵引变压器 137
第一节 变压器基础知识 137
第二节 动车组牵引变压器 148
习 题 155
第五章 动车组牵引电机 156
第一节 直流电机基础知识 156
第二节 交流电机基础知识 191
第三节 动车组牵引电机 216
习 题 242
参考文献 245

第一章 概 论

本章主要介绍电器学四个基础理论知识，掌握电器设计制造，工作原理，工作寿命及报废的科学机理与依据等基础知识，学会判断各类电器的正常及非正常工作状态。

《电工术语 基本术语：GB／T 2900．1—2008》定义：电器（apparatus），器件或多个器件的组合。它能作为实现特定功能的独立单元使用。

电器是一种能根据外界的信号（机械力，电动力和其他物理量）和要求，手动或自动地接通，断开电路，以实现对电路或非电对象的切换，控制，保护，检测，变换和调节的电气元件或设备。电器的控制作用就是手动或自动地接通，断开电路，＂通＂称为＂开＂，＂断＂称为＂关＂。因此，＂开＂和＂关＂是电器最基本，最典型的功能。

电器的分类按工作电压等级分为高压电器和低压电器。高压电器用于交流电压 1200 V ，直流电压 1500 V 及以上电路中，如高压断路器，高压隔离开关，高压熔断器等。低压电器用于交流 50 Hz （或 60 Hz ）额定电压 1200 V 以下，直流额定电压 1500 V 及以下的电路中，如接触器，继电器等。电器按动作原理可分为手动电器和自动电器；按工作原理可分为电磁式电器和非电量控制电器；按用途可分为配电电器，控制电器，主令电器，保护电器，执行电器等。配电电器主要用于供，配电系统中，进行电能输送和分配，如刀开关，自动开关，隔离开关，转换开关以及熔断器等，对这类电器的主要技术要求是分断能力强，限流效果好，动稳定及热稳定性能好。控制电器主要用于各种控制电路和控制系统，这类电器有接触器，继电器，转换开关，电磁阀等，对这类电器的主要技术要求是有一定的通断能力，操作频率高，电器和机械寿命要长。主令电器主要用于发送控制指令，如按钮，主令开关，行程开关和万能转换开关等，对这类电器的主要技术要求是操作频率要高，抗冲击，电器和机械寿命长。保护电器主要用于对电路和电气设备进行安全保护，如熔断器，热继电器，安全继电器，电压继电器，电流继电器和避雷器等，对这类电器的主要技术要求是有一定的通断能力，反应灵敏，可靠性高。执行电器主要用于执行某种动作和传动功能，如电磁铁，电磁离合器等。

电器的作用有控制，保护，测量，调节，指示，转换等。控制作用如电梯的上下移动，快慢速自动切换与自动停层等。保护作用指能根据设备的特点，对设备，环境以及人身安全实行自动保护，如电动机的过热保护，电网的短路保护，漏电保护等。测量作用指利用仪表及与之相适应的电器，对设备，电网或其他非电参数进行测量，如电流，电压，功率，转速，温度，压力等。调节作用如电动机速度的调节，柴油机油门的调整，房间温度和湿度的调节，光照度的自动调节等。指示作用指显示检测出的设备运行状况与电气电路工作情况。转换作用如被控装置操作的手动与自动的转换，供电系统的市电与自备电源的切换等。当然，电器的作用远不止这些，随着科学技术的发展，其新功能，新设备会不断出现。

第一节 电器的热稳定性

一，电器的发热与散热

有触点电器是由导电材料，导磁材料和绝缘材料等组成的。
电器在工作时由于有电流通过导体和线圈而产生电阻损耗。这些损耗几乎全部都转变为热能。其中一部分散失到周围介质中，另一部分加热电器本身，使其温度升高。

电器温度升高后，其本身温度与周围环境温度之差，称为温升。
为了确保电器的工作性能和使用寿命，各国电器技术标准都规定了电器各部件的发热温度极限及允许温升。

发热温度极限就是保证电器的机械强度，导电，导磁性以及介质的绝缘性不受危害的极限温度。

允许温升是发热温度极限与最高环境温度的差值。
因为电器的工作环境直接影响电器的散热过程。我国国家标准规定最高环境温度为＋ $40^{\circ} \mathrm{C}$（一般为 $35^{\circ} \mathrm{C}$ ），即允许温升 $=$ 发热温度极限 $-40^{\circ} \mathrm{C}$ 。

电器工作时，电流通过导电部分将产生电阻损耗。载流导体的功率损耗为：$P=I^{2} R, P$为电阻损耗功率（W），I 为通过导体的电流（A），R 为导体电阻（ Ω ）。当导体中流进交变电流时，考虑集肤和邻近效应时，R 应为交流电阻。

集肤效应，当导体通以交流电流时，导体断面上出现的电流分布不均匀，电流密度由导体中心向表面逐渐增加，大部分电流仅沿导体表层流动的一种物理现象。导体的电阻率越低，磁导率越大，电流的频率越高，其集肤效应越显著。

邻近效应，当高频电流在两导体中彼此反向流动或在一个往复导体中流动时，电流会集中于导体邻近侧流动的一种特殊的物理现象。电流同向：相邻侧感应的反电势大，故电流密度小；电流反向：相邻侧感应的反电势小，故电流密度大。

损耗转变为热能。正常状态时，其中一部分散发到周围介质中去，另一部分使导体的温度升高，形成温升。如果发热时间极短（如短路时的发热），由于来不及散热，可认为损耗功率全部用来加热导体，提高导体的温度。

铁磁体在交变磁通的作用下，会在铁磁零件中产生一定的涡流。这是因为铁的磁导率很高，而磁通变化速度又快，因而产生相应的电动势和涡流损耗。同时，磁通的方向和数值变化使铁磁材料反复磁化，产生磁滞与涡流损耗可以导致铁质零件发热。一般来说，这个损耗不大，但如果制造不当，如材料较差，铁片较厚或片间绝缘不好，则涡流损耗就比较大。

绝缘介质中的介质损耗一般与电场强度及频率有关。电场强度和频率越高则介质损耗也越大。对于电场强度较小的低压电器而言，介质损耗小到实际上可以忽略不计。但在高压电器中，由于电压高，介质中的电场强度大，必须考虑介质损耗。

电器工作时，只要电器温度高于周围介质及接触零件的温度，它便向周围介质散热。所以发热和散热同时存在于电器发热过程中。

当电器产生的热量与散失的热量相平衡时，电器的温升维持不变，这时称电器处于热稳

定状态。此时的温升称为稳定温升。若温升随着时间而变化，则称为不稳定发热状态。
电器的散热以传导，对流与辐射三种基本方式进行。
热传导现象的实质是通过具有一定内部能量的物质基本质点间的直接相互作用，使能量从一个质点传递到另一相邻质点。热传导的方向是由较热部分向较冷部分传递，或由发热体向与它接触的物体传播。热传导是固体传热的主要方式，它也可在气体和液体中进行。

对流是通过流体（液体与气体）的运动而传递热量。热量的转移和流体本身的转移结合在一起。根据流体流动的原因，对流分为自然对流和强迫对流。动车组的电机，电器等因受安装空间的限制，较多采用强迫对流（强迫风冷却或强迫油循环冷却），可加强散热，缩小体积来解决此类问题。

热辐射是发热体的热量以电磁波形式传播能量的过程。热辐射可穿越真空和气体而传播，但不能透过固体和液体物质。

电器在使用过程中，由于工作任务的要求不同，其工作时间的长短也不同。例如，供电系统中的一些开关，只要不出现故障和必要的检修，它就一直处于工作状态，而动车组上控制空气压缩机的电器则处于一种断续工作状况。由于工作时间长短不同，故电器的发热及冷却状况也不同。

电气设备在运行中有两种工作状态。正常工作状态，指运行参数都不超过额定值，电气设备能够长期而经济地工作的状态。短路时工作状态，当电力系统中发生短路故障时，电气设备要流过很大的短路电流，在短路故障被切除前的短时间内，电气设备要承受短路电流产生的发热和电动力的作用。

电气设备在工作中有三种损耗：＂铜损＂，即电流在导体电阻中的损耗；＂铁损＂，即在导体周围的金属构件中产生的磁滞和涡流的损耗；＂介损＂，即绝缘材料在电场作用下产生的损耗。这些损耗都转换为热能，使电气设备的温度升高。

电气设备由正常工作电流引起的发热称为长期发热，由短路电流引起的发热称为短时发热。发热不仅消耗能量，而且导致电气设备的温度升高，从而产生机械强度下降，接触电阻增加，绝缘性能下降等不良影响。

当电气设备通过短路电流时，短路电流所产生的巨大电动力对电气设备具有很大的危害性。（1）载流部分可能因为电动力而振动，或者因电动力所产生的应力大于其材料允许应力而变形，甚至使绝缘部件（如绝缘子）或载流部件损坏。（2）电气设备的电磁绕组，受到巨大的电动力作用，可能使绕组变形或损坏。（3）巨大的电动力可能使开关电器的触头瞬间解除接触压力，甚至发生斥开现象，导致设备故障。

电器在通过工作电流时，在其工作制下，要经受额定电流发热的考验。若电路发生了短路故障，其短路电流远大于额定电流，在保护电器还未将故障切除前，电器还必须能承受一定时间内短路电流的发热考验。由于短路电流的时间很短，可以认为是绝热过程，即不考虑散热，全部损耗都用来加热电器。

电器的热稳定性是指在一定时间内能承受短路电流（或所规定的等值电流）的热作用而不发生热损坏的能力，如不会因发热而产生不允许的机械变形，触头处不会熔焊等。

二，典型案例

1．案例概述

某次动车组列车（CRH2 0 ＊＊担当）运行后检查发现，牵引电机温度异常，经测量多个电机外壳温度偏高，超过 $110^{\circ} \mathrm{C}$ ，同时检查发现多个电机出现漏油现象。

2．电器发热的原因

电器的发热原理各有不同，大致有以下 5 种。
（1）电阻损耗，如电热毯发热。
（2）磁滞涡流损耗，如电磁炉煮食物的时候，铁锅底部涡流发热；还有电子线圈通电的时候，铁心反复磁化而发热。
（3）介质损耗，如空气开关的绝缘壳体发热，一方面是由于其他的部件传递来的热量，另一方面是由于绝缘壳体在变化的电磁场的作用下产生的热量。
（4）摩擦碰撞损耗，如自动开关触头在闭合和断开的过程中不断摩擦碰撞而产生的热量。
（5）电弧发热，如电焊的时候产生电弧并发出热量。

3．电器发热的危害

电器发热可以为我们所用，如电热毯，电焊机发热，为我们生活，工作提供方便，但是电器发热也会带来危害。
（1）电器运行速度变慢，如手机发热，计算机发热，会使手机，计算机上网，游戏不流畅。
（2）电器使用寿命降低造成成本增加。有的家用电器只用了两三年就出现故障，就是由于散热不良导致寿命减少。
（3）电器机械部件受热强度降低造成事故。
（4）电器发热无法散发产生火灾。
电器发热，当它的温度超过某一极限值后，其中金属材料的机械强度会明显下降，绝缘材料的绝缘强度会受到破坏。若电器温度过高，会使其使用寿命降低，甚至遭到破坏。

4．电器的散热

电器在使用时，有的需要发热量大，如电热毯，电茶炉；有时需要尽可能少发热，如手机，冰箱等。电器工作时发热无法阻止，但是可以让电器快速散热以降低电器温度。散热的实质就是物体或物体间的热量的传递

传导，对流和辐射就是物体传递热能的三种方式，电器传热也不例外。这三种热量传递方式各有特点。传导，需要接触，可以在固体，液体，气体中进行。对流只限于流体中，固体中不能进行。辐射是以电磁波形式传播热量，可穿越真空和气体而传播，但不能透过固体和液体物质。

电器工作时，一方面会产生热量，使自身温度高于周围环境温度，另一方面，电器也会通过传导，对流或辐射的方式散发热量。当电器产生的热量与散出的热量平衡时电器的温升

维持不变，这时电器处于热稳定状态，此时的温升称为稳定温升。

5．案例解析

根据前面所提到的电器发热及散热理论，分析动车组牵引电机热量来源：
（1）牵引电机工作时，定子线圈和转子线圈通过电流，产生电阻损耗，即绕组发热。
（2）牵引电机里面有旋转磁场，机座及其他导磁材料产生磁滞损耗。
（3）牵引电机里面的绝缘材料，在旋转磁场的作用之下反复磁化，存在介质损耗。
（4）牵引电机的滚动轴承，滚珠与轴承的外圈，内圈相互摩擦碰撞，存在摩擦碰撞损耗。动车组牵引电机的散热方式：
（1）牵引电机工作时温度高于周围空气温度，通过对流向周围空气中散发热量。
（2）牵引电机与安装座等低温物体接触，通过传导的方式散发部分热量。
牵引电机有强迫式冷却风机，强迫对流冷却，这是动车组牵引电机的主要散热方式。
动车组牵引电机温升异常原因分析：动车组牵引电机的降温主要取决于冷却风机的强迫对流，温升异常是牵引电机主要冷却方式作用不良造成的。

动车组牵引电机漏油分拆：动车组牵引电机轴承充有润滑油脂，正常情况下，呈糔糊状，高温时油脂稀释从电机端盖缝隙中溢出。

牵引电机散热不良，导致温度升高，超过一定极限数值时会使轴承漏油造成润滑不良，电机绝缘材料绝缘性能下降，轴承等部件机械强度降低，可能产生更严重的后果，因此必须立即排除故障。

第二节 电器的动稳定性

一，概 述

载流导体处在磁场中会受到力的作用，载流导体间相互也会受到力的作用，这种力称为电动力（见图 1－1 和图 1－2）。对于这种现象，有可利用的一面，如电动机就是利用这一原理将电能转换为机械能。也有危害的一面，如对大容量输配电设备来说，在短路情况下电动力可达很大数值，对配电装置的性能和结构影响极大。在电器中，载流导体间，线圈匝间，动静触头间，电弧与铁磁体间等都有电动力的作用。在正常电流下电动力不致使电器损坏，但动，静触头间的电动斥力过大会使接触压力减小，接触电阻增大造成触头的熔化或熔焊，影响触头的正常工作。有时在强大短路电流所形成的电动力下，使电器发生误动作或使导体机械变形，甚至损坏。利用电动力的作用改善和提高电器性能的例子也是很多的，例如接触器的磁吹灭弧（见图 1－3），快速自动开关的速断机构等。

电动力的方向判断可用左手定则或磁通管侧压力原理来进行。左手定则为伸平左手，磁通穿过左手掌，四个手指为电流方向，大拇指就是指向电动力方向，如图 1－4 所示。磁通管侧压力原理（米特开维奇定则）：把磁力线看成为磁通管，磁通管密度高的一侧具有推动导体

向密度低的一侧运动的力，这个方向即为电动力的方向。
电动力方向判断的两种方法其结果是一样的，可根据具体情况采用某一种。在结构及产生磁场因素复杂的情况下用磁通管侧压力原理来判定电动力方向较为方便。

图1－1 环型导体和 U 形导体所受电动力

图 1－2 电弧受到的电动力

1 —磁吹线圈； 2 —磁吹铁心；3—导弧角；4—电弧；5—铁夹板；6—动触头；7—静触头。
图1－3 利用电动力的磁吹原理

图 1－4 载流导体在磁场中受到电动力
当长为 L 并通有电流 I 的导体垂直置于磁感应强度为 B 的均匀磁场中时，作用在该导体

上的电动力 $F=B I L_{\circ}$ 。若该导体与磁感应强度 B 的方向成 β 夹角时，则作用在导体上的电动力为 $F=B I L \sin \beta$ 。

电器的电动稳定性就是指当大电流通过电器时，在其产生的电动力作用下，电器有关部件不产生损坏或永久变形的性能。也可以说电器有关部分在电动力作用下不产生损坏或永久变形所能通过的最大电流的能力。它以可能的最大冲击电流的峰值表示，也可以它与额定电流的比值表示。

触头闭合通过电流时，在触头间有电动力存在。这是因为触头表面不管加工得怎样平整，从微观上看仍然是凹凸不平的，如图 1－5 所示。由于接触面积远小于触头表面积，电流线在接触点处产生收缩，由此而引起触头间的电动斥力。

如图 1－6 所示，闭合的隔离开关动静触头间存在电动斥力，当电流很大时，此电动力可将触头间接触压力减小，甚至引起触头的机械形变或触头拉开造成误动作。触头处在闭合位置能承受短路电流所产生的电动力而不致损坏的能力，称为触头的电动稳定性。

图 1－5 接触的触头间收缩电动力

图 1－6 隔离开关受到的电动力

二，典型案例

所有电器结构中都会有导体，在有电流通过时，导体之间会产生安培力的作用。另外，通电导体在磁场中也会受到磁场力的作用。载流导体在磁场中或者载流导体相互之间产生的安培力，称为电动力。正常情况下电动力比较小，不会对电器产生不良影响。

特殊形式下电动力方向的判断，平行通电直导线之间的电动力方向：当通过的电流方向相同，通电直流导线之间存在相互吸引电动力，当通过的电流方向相反，存在一个相互推斥的电动力。共轴的平行线圈，当两个平行线圈通过的电流方向相同时，产生相互吸引的电动力，当两个平行线圈通过的电流方向相反时，相互排斥的电动力。环形导线或者是半封闭的电路，产生一个通胀趋势的电动斥力。导线截面积收缩减小的地方会产生电流收缩的电动斥力。

日常生活中，电器会出现一些异常现象：闸刀自动跳闸；焊好的导线，无缘无故自动断线；灯泡不停地闪烁；还有一些电器在短路的时候突然爆炸。怎么解释电器产生的这些怪现象呢？

闸刀电路结构是半封闭型，电流增大时，闸刀部件间产生的电动斥力增大而跳闸。焊接

的导线自动断开也是因为焊接处截面积减小产生电动斥力而造成脱焊。灯泡闪烁是由于灯泡开关动静触头接触处导电面积减小存在电动斥力造成动静触头接触不良时通时断。

电器发生异常现象是电动力危害的表现，其实电动力也有有利的一面。日常生活中常用到的接线板的插孔一般有两个铜片，这两个铜片通过的电流方向相同，铜片之间产生电动吸力，将插头的金属片夹紧，保证导电可靠。大容量电器经常用电动力原理设计灭弧装置。

第三节 电 弧

一，电弧的现象与特点

电弧是气体放电的一种形式。
气体放电分为自持放电与非自持放电两类，电弧属于气体自持放电中的弧光放电。试验证明，当在大气中开断或闭合电压超过 10 V ，电流超过 0.5 A 的电路时，在触头间隙（或称为弧隙）中会产生一团温度极高，亮度极强并能导电的气体，称为电弧。由于电弧的高温及强光，它可以广泛应用于焊接，熔炼，化学合成，强光源及空间技术等方面。对于有触点电器而言，由于电弧主要产生于触头断开电路时，高温会烧损触头及绝缘，严重情况下甚至引起相间短路，电器爆炸，酿成火灾，危及人员及设备的安全。所以从电器的角度来研究电弧，目的是了解它的基本规律，找出相应的办法，让电弧在电器中尽快熄灭。

当触头开断，在触头间隙中有电弧燃烧时，电路仍然导通。这说明此时触头间隙的气体由绝缘状态变成了导电状态。气体呈导电状态的原因是原来的中性气体分解为电子和离子，即气体被游离，此过程称为气体的游离过程。气体游离出来的电子和离子在电场作用下各朝对应的极运动，便形成电流，从而造成触头虽然已开断，但电路却并未被切断。当电弧熄灭之后电路就不再导通了。这说明此时触头间隙的气体恢复了介质强度，又呈现绝缘状态，即气体已经消除游离而恢复为中性。那么，气体是怎么游离和消游离的呢？

金属材料表面在某些情况下能发射出自由电子，这种现象叫作表面发射。自由电子的产生是由于金属内的电子得到能量，克服内部的吸引力而逸出金属。从物质原子的结构而言，是由原子核与若干电子构成的。如果外界加到电子上的能量足够大，能使电子克服原子核的吸引力作用而成为自由电子，这种现象称为游离。

触头开断电路时，产生电弧的原因主要有：阴极热发射电子；阴极冷发射电子；碰撞游离和热游离等。

阴极热发射电子：触头开断过程中，触头间的接触面积逐渐减小，接触处的电阻越来越大，电流密度也逐渐增大，触头表面的温度剧增，金属内由于热运动急剧活跃的自由电子就克服内部的吸力而从阴极表面发射出来，这种主要是由于热作用所引起的发射称为热发射。温度越低，逸出的功越大时，热发射的电流密度越小。

阴极冷发射电子：在触头刚刚分开发生热发射的同时，由于触头之间的距离很短，线路电压在这很小的间隙内形成很高的电场，此电场将电子从阴极表面拉出，形成强电场发射。

在强电场发射中，并不需要热功的参与，所以强电场发射也称为冷发射。当金属的温度越低，阴极表面电场越小时，电子发射的数量就越少。

通常阴极电子的发射，同时包含了热发射和冷发射的过程，只是不同的材料热发射和冷发射的程度各不相同。

碰撞游离：由于冷热两种发射的作用，大量电子从阴极表面进入弧隙。它们在电场的作用下，获得动能而加速，随着触头的分开不断地撞击气体的原子或分子（中性粒子），当此粒子具有的动能大于中性粒子的游离能时，该中性粒子则分解为带电荷的自由电子和正离子，这一现象叫作碰撞游离（或称为电场游离）。碰撞游离后出现的自由电子在电场作用下又可同其他中性粒子发生新的撞击和游离，使得自由电子和正离子数累进增加。弧隙中的中性气体就变为导电的自由电子与正离子。在电场作用下，它们向阴极，阳极运动，电弧形成，电路并未断开。若电子撞击中性粒子不足以使其立即游离，但经多次撞击，中性粒子所获得能量也使其发生了游离，这种过程称为累积游离。在带电粒子中，由于电子体积和质量小，自由行程长，容易加速而获得能量，故其游离作用比正，负离子大得多。

热游离：随着电弧的形成，在电弧燃烧时，弧隙中气体温度很高，气体中的中性原子或分子由于热运动而发生互相撞击，其结果也造成游离，这就是热游离。热游离实质上也是碰撞游离，只不过发生碰撞的原因是高温引起而不是电场引起的。所以温度越低，热游离越弱；相反温度越高，热游离越强。

中性粒子热游离的程度与温度的高低，气压的大小，物质的游离能大小有关。在高温状况下，金属材料容易发生气化，金属蒸气的游离能比气体小得多。当气体中混有金属蒸气时，游离程度更加迅速。

由此可见，电弧的产生，第一是由于热的作用，发生热发射和热游离；第二是由于电场的作用，发生冷发射和碰撞游离，在气隙间出现大量电子流，使气体由绝缘体变成导体。应注意的是，在整个过程中几种物理作用并不是截然分开的，而是交叉进行或同时存在的。电弧燃烧期间，起主要作用的是热游离。因而，使电弧迅速冷却是熄灭电弧的主要方法。

从能量的角度来说，电弧燃烧时要从电源不断向电弧内部输入能量，而这个能量又不断转变为电弧的热量通过传导，对流及辐射三种方式散失。

当电弧稳定燃烧时，它处在热动平衡状态，此时不可能有电子和离子的积累。这说明电弧中气体游离现象的同时还存在一个相反的过程，即消游离。消游离就是正，负带电粒子中和而变成中性粒子的过程。消游离的方式分为两类：复合和扩散。

带异性电荷的粒子相遇后相互作用中和而变成中性粒子称为复合。（1）表面复合：带正，负电荷的粒子附在金属或绝缘材料表面上，相互吸引而中和电荷，变成中性粒子。（2）空间复合：带正，负电荷的粒子在放电间隙中相互吸引而中和电荷，变成中性粒子。自由电子与正离子相遇，相互吸引而中和电荷而变成中性粒子，称为直接复合。由于自由电子的运动速度比正离子大得多，所以直接复合的概率很小。往往自由电子黏合在中性粒子上，再与正离子相遇而复合，中和电荷形成两个中性粒子。这种过程称间接复合。因为正，负离子的运动速度相当，发生间接复合的概率大，约为直接复合的上千倍。自由电子黏合在中性粒子上形成负离子的强弱与气体的种类和纯净度有关。氟原子及其化合物 SF_{6} 分子与自由电子的黏合作

用很强，所以称为负电性气体。 SF_{6} 的复合能力很强，是比较理想的消游离绝缘介质，现已应用在高压断路器中。

显而易见，带电粒子运动速度是直接影响复合作用大小的重要因素。降低温度，减小电场强度可使粒子运动速度减小，易于复合；带电粒子浓度增大时，复合机会增多，复合作用也可以加强，在电弧电流不变的条件下，设法缩小电弧直径，则粒子浓度可增大；此外，加入大量的新鲜气体分子，也可增强复合作用。

复合过程总是伴随着能量的释放。释放出来的能量成为加热电极，绝缘物及气体的热源，同时也向四周散发。

带电粒子从电弧区转移到周围介质中去的现象称为扩散。电弧是一个电子和离子高度密集的空间，同时它的温度很高。它和气体分子一样，有均匀分布在容积中的倾向，这样电子便从弧隙中向四周扩散，扩散出来的电子（或离子）因冷却互相结合而成为中性分子，这种过程的进行不在电弧的内部，而在电弧的表面进行。

扩散的方向一般从高温，高浓度区向低温，低浓度区。扩散使电弧中的带电粒子减少。扩散出来的带电粒子因冷却很容易相互结合，中和电荷而形成中性粒子。扩散速度与电弧内外浓度差，温度差成正比。电弧直径越小，弧区中带电粒子浓度越大；电弧与周围介质温差越大，扩散速度均越大。因此，加速电弧的冷却是提高扩散作用的有效方法。

综上所述，电弧中存在着游离和消游离两方面的作用。当游离作用占优势时电弧就会产生和扩大；当消游离作用占优势时，电弧就趋于熄灭；当游离作用和消游离作用处于均衡状态时，则弧隙中保持一定数量的电子流而处于稳定燃烧状态。游离与消游离作用与许多物理因素有关，如电场强度，温度，浓度，气体压力等。那么，我们可以根据这些物理因素的变化影响情况，找出一些切实可行的方法，减小游离，增加消游离，使触头断开电路时产生的电弧尽快地熄灭。

直流电弧是指产生电弧的电路电源为直流。当直流电弧稳定燃烧时，电路仍是导通的，因而电弧中有电弧电流，电弧两端有电弧压降。熄灭直流电弧最常用的方法是拉长电弧，而且拉长的方式也有多种。

交流电弧与直流电弧有所不同，交流电流的瞬时值随时间变化，每周期内有两次过零点。电流经过零点时，弧隙的输入能量等于零，电弧温度下降，电弧自然熄灭。而后随着电压和电流的变化，电弧重新燃烧。因此，交流电弧的燃烧，实际上就是熄弧的点燃，熄灭周而复始的过程。交流电弧电流通过零点时，由于电源停止供给电弧能量，热游离迅速下降，为电弧的最终熄灭创造了最有利的条件，此时只要采取一定的消游离措施，使少量的剩余离子复合，就能防止电弧在下半周重燃，使电弧最终熄灭。因此，交流电弧比直流电弧容易熄灭。利用电弧电流自然过零的特点进行的熄弧称为零点熄弧原理。

交流电弧由于弧电流过零时，电源停止供给能量，电弧自然熄灭。但是交流电弧过零自然熄灭后，还会重新燃烧。所以怎样防止电弧重燃就是研究交流熄弧的重点。为此，我们将研究在电流通过零点时弧隙中存在的物理过程，了解哪些因素能使电弧重新点燃，哪些因素的抑制电弧重燃。从这一观点出发，凡是抑制电弧重新点燃的因素，或是加强不利于电弧重新点燃的因素，都可以促使交流电弧熄灭。那么可以简单地确定交流电弧熄灭条件为：交流

电弧电流过零后，如果弧隙介质强度恢复的速度超过了弧隙电压恢复的速度，则电弧熄灭；反之，电弧重燃。

二，熄灭电弧的方法

通过前面的一系列理论分析，可以找出加速电弧熄灭的很多方法，如拉长电弧，降低温度，将长弧变为短弧，将电弧放置于特殊介质中，增大电弧周围气体介质的压力等。为了减少电弧对触头的烧损和限制电弧扩展的空间，通常要将这些方法加以综合应用，为此而采用的装置称为灭弧装置。一个灭弧装置可以采用某一种方法进行焻弧。但在大多数情况下，则是综合采用几种方法，以增加灭弧效果。例如，拉长和冷却电弧往往是一起运用的。

1．拉长电弧

电弧可以沿其轴向（纵向）拉长，也可以沿垂直于电弧轴向（横向）拉长。（1）机械力拉长：电弧沿轴向拉长的情况是很多的，电器触头分断过程实际上就是将电弧不断地拉长。刀开关中闸刀的拉开也拉长电弧，电焊过程中将焊钳提高可使电弧拉长并熄灭。（2）回路电动力拉长：载流导体之间会产生电动力，如果把电弧看作为一根软导体，那么受到电动力就会发生变形，即拉长。如图1－7（a）所示，在一对桥式双断点结构形式的触头断开时，电弧受回路电动力 F 的作用被横向拉长，横向拉长时电弧与周围介质发生相对运动而加强了冷却，这样就加速了电弧的熄灭。有时为了使磁场集中，在触头上添加磁性片 6 ，以增大吹弧力，如图 1－7（b）所示。因利用回路本身灭弧的电动力不够大，电弧拉长和运动的速度都较小，所以这种方法一般仅用于小容量的电器中。

图 1－7 触头回路电动力吹弧
开断大电流时，为了有较大的电动力而专门设置了一个产生磁场的吹弧线圈，这种利用磁场力使电弧运动而熄灭的方法称为磁吹灭弧。由于这个磁场力比较大，其拉长电弧的效果也较好，如图 1－8 所示。

磁吹线圈 4 是接在引出线和静触头 6 之间，通过绝缘套与磁吹铁心绝缘，导弧角 2 和静触头 6 固装在一起。磁吹线圈 4 中的磁吹铁心 1 两端各装有一片导磁夹板 5 ，磁夹板 5 同时夹于灭弧室两侧，用来加强弧区磁场。设在灭弧室中的动静触头就处在磁板之间。

当触头分开有电弧燃烧时，磁吹线圈和电弧本身均在电弧周围产生磁场。由图 1－8 可

见，在弧柱下方一侧，磁吹线圈的磁通和电弧的磁通是叠加的，而在弧柱上方一侧，两磁通是削弱的，因此就产生磁吹力。电弧在磁吹力的作用下发生运动，电弧被拉长，电弧的根部离开静触头而移到导弧角 2 上，进一步拉长了电弧，使电弧迅速熄灭。导弧角 2 是根据回路电动力原理设置的，用来引导电弧尽快按一定方向离开触头，以保护触头接触面免受电弧的烧伤。

1—磁吹铁心；2—导弧角；3—灭弧罩；4—磁吹线圈；
5—铁夹板；6—静触头；7—动触头；8—绝缘套。
图 1－8 磁吹灭弧装置
由于磁吹线圈与电路的连接方式不同而形成串激线圈和并激线圈之分。
上面介绍的这种磁吹线圈和触头相串联的激磁方法称为串激法。它的优点是，电流流向改变但磁吹力方向不变，即磁吹方向不随电流极性的改变而改变。具有这种磁吹的电器称为＂无极性电器＂。同时因为是串激，通过磁吹线圈的电流与弧电流相同，因此弧电流越大则灭弧效力就越强；反之弧电流小时，灭弧效力就弱。因此串激法适用于切断大电流的电器中。

在熄灭直流电弧时，外加磁场除了串激法外，还有并激法和他激法。它们的工作原理相同。并激法的磁吹线圈不是和负载回路串联，而是直接跨接在电源上。它的优点是，可产生一个与回路电流无关的恒定磁场。这样，在一定的恒定磁场下，不论开断大电流或小电流，都可使电弧很快熄灭。但是由此产生的缺点是使电器的接线带有极性，即当触头上电流反向时，必须同时改变并激线圈的极性，否则磁吹力就会反向，所以使用中不太方便。所谓他激法，就是用永久磁铁来代替并激法的磁吹线圈，它的磁吹特性和并激法相似，不同点是无须线圈和电源，因而结构更趋简单。

2．灭弧罩

灭弧罩是让电弧与固体介质相接触，降低电弧温度，从而加速电弧熄灭的常用装置，如图1－9所示。其结构形式有多样，但其基本构成单元为＂缝＂（灭弧罩壁与壁之间构成的间隙称作＂缝＂）。根据缝的数量可分为单缝和多缝。根据缝的宽度与电弧直径之比可分为窄缝与宽缝。缝的宽度小于电弧直径的称为窄缝；反之，称为宽缝。根据缝的轴线与电弧轴线间的相对位置关系可分为纵缝与横缝。缝的轴线和电弧轴线平行的称为纵缝，两者垂直的称为横缝。

图 1－9 灭弧罩

3．油冷灭弧装置

油冷灭弧是将电弧置于液体介质（一般为变压器油）中，电弧将油气化，分解而形成油气。油气中主要成分是氢，在油中以气泡的形式包围电弧。氢气具有很高的导热系数，这就使电弧的热量容易散发。另外，由于存在温度差，所以气泡产生运动，又进一步加强了对电弧的冷却。若再要提高其灭弧效果，可在油箱中加设一定机构，使电弧定向发生运动，这就是油吹灭弧。由于电弧在油中灭弧能力比大气中拉长电弧大得多，所以这种方法一般用于高压电器中，如油开关。

4．气吹灭弧装置

气吹灭弧是利用压缩空气来熄灭电弧的。压缩空气作用于电弧，可以很好地冷却电弧，提高电弧区的压力，很快带走残余的游离气体，所以有较高的灭弧性能。按照气流吹弧的方向，它可以分为横吹和纵吹两类。横吹灭弧装置的绝缘件结构复杂，电流小时横吹过强会引起很高的过电压，已被淘汰。图 1－10 所示为纵吹（径向吹）的一种形式。压缩空气沿电弧径向吹人，然后通过动触头的喷口，内孔向大气排出，电弧的弧根能很快被吹离触头表面，因而触头接触表面不易烧损。因为压缩空气的压力与电弧本身无关，所以使用气吹灭弧时要注意熄灭小电流电弧时容易引起过电压。由于气吹灭弧的灭弧能力较强，故一般运用在高压电器中，如韶山系列机车的空气断路器（主断路器）。

1 —动触头； 2 —灭弧室瓷罩； 3 —静触头； 4 —压缩空气； 5 —电弧。
图1－10 气吹灭弧装置

5．横向金属栅片灭弧

横向金属栅片又称为去离子栅，它利用的是短弧灭弧原理。用磁性材料的金属片置于电

弧中，将电弧分成若干短弧，利用交流电弧的近阴极效应和直流电弧的近极压降来达到熄灭电弧的目的（见图 1－11）。栅片的材料一般采用铁，铁栅片在使用时一般外表面要镀上一层铜，以增大传热能力和防止铁片生锈。横向金属栅片灭弧装置主要用于交流电器。

（a）电弧在横向金属栅中状况

（b）横向金属栅对电弧的作用

（c）横向金属栅灭弧原理

1 —入棚片前的电弧；2—金属棚；3—入棚片后的电弧
图1－11 横向金属栅层灭弧

6．真空灭弧装置

真空灭弧是使触头电弧的产生和熄灭在真空中进行，依据零点熄弧原理，熄弧介质为真空。在真空中气体很稀薄，电子的自由行程远大于触头间的距离。当真空度为 $10^{-5} \mathrm{mmHg}$ （ $1.33 \times 10^{-4} \mathrm{~Pa}$ ）时，电子的自由行程达 43 m 。自由电子在弧隙中做定向运动时几乎不会和气体分子或原子相碰撞，不会产生碰撞游离。所以将触头置于真空中断开时产生的电弧则是由于阴极发射电子和产生的金属蒸气被电离而形成的。当电弧电流接近零时，阴极发射的电子和金属蒸气减少，弧隙中残留的金属蒸气和等离子体向周围真空迅速扩散。这样，弧隙可以在数微秒之内由导电状态恢复到真空间隙的绝缘水平。因此，在真空中触头有很高的介质恢复速度，绝缘能力和分断电流的能力。

第四节 电接触

电器的导电回路是由若干元件构成的，其中，两个零件通过机械连接方式互相接触而实现导电的现象称为电接触。电接触的目的是导电。接触中出现的有关物理的，化学的，电的现象称为电接触现象。电接触是所有电气设备中不可避免的一种普遍现象。在开关电器和接插件中是很重要的部分。接触部分出问题会造成各种故障，有时后果会很严重。

电路的通断和转换是通过电器来实现的，触头是有触点电器完成其职能的执行机构。触头工作的优劣直接影响到电器的性能，但由于它经常受到机械撞击，发热及电弧等的有害作用，极易损坏，所以它也是有触点电器的一个薄弱环节。

一，接触电阻

图 1－12（a）所示为一段完整的导体，通以电流 I ，用电压表测量出其 $A B$ 长度上的电压

降为 U ，则 $A B$ 段导体的电阻为 $R=\frac{U}{I}$ 。
如果将此导体截断，仍通以原来的电流，测得 $A B$ 两点之间的电压降为 U_{C}［见图1－12（b）］， U_{C} 比 U 大得多，$A B$ 点之间的电阻为 $R_{C}=\frac{U_{C}}{I} 。 R_{\mathrm{C}}$ 除含有该段导体材料的电阻 R 外，还有附加电阻 R_{j} ，即 $R_{\mathrm{C}}=R+R_{\mathrm{j}}$ 。

附加电阻为收缩电阻与表面膜电阻之和，是由于接触层之间直接产生的电阻，故称附加电阻 R_{j} 为接触电阻。动静触头接触时同样也存在接触电阻。

1．收缩电阻

接触处的表面无论经过多么细致的加工处理，从微观角度分析，其表面总是凹凸不平的，不是整个面积接触，而是只有若干小的突起部分相接触，如图 1－13所示，实际接触面积比视在接触面积小得多。当电流通过实际接触面积时，电流只从接触点上通过，在这些接触点附近，迫使电流线发生收缩。由于有效接触面积（即实际接触面积）小于视在接触面积，由此产生的附加电阻称为收缩电阻 R_{s} 。

（ a ）

（b）

图 1－12 接触电阻

图 1－13 电流线收缩

2．表面膜电阻

由于种种原因，在触头的接触表面上覆盖着一层导电性很差的薄膜，如金属的氧化物，硫化物等，也可能是落在接触表面上的灰尘，污物或夹在接触面间的油膜，水膜等，由此而形成的附加电阻，称为表面膜电阻 R_{b} 。表面膜电阻的大小除和膜的种类有关外，还与薄膜的厚度有关，膜越厚，电阻越大。

接触电阻与触头材料，触头压力，接触面形式，表面和清洁状况等有关。

二，影响接触电阻的因素

影响接触电阻的因素有接触压力，触头材料，触头温度，触头表面情况，接触形式及化学腐蚀等。

1．接触压力的影响

接触压力对接触电阻的影响最大，当接触压力很小时，接触压力微小的变化都会使接触电阻值产生很大的波动。触头接触电阻与接触压力近似双曲线关系，即接触电阻值在一定的压力范围内是随外施压力 F 的增大而减小的，如图1－14所示。在压力作用下，两表面接触处

产生弹性变形，压力增大，变形增加，有效接触面积也增加，收缩电阻减小。当压力达到一定值后，收缩电阻几乎不变，因为材料的弹性变形是有一定限度的，接触面积的增加也是有限的，接触电阻不可能完全消除。增大接触压力，可将氧化膜压碎，使膜电阻减小，但压力增大到一定程度后，膜电阻稳定在一个较小的数值。

图 1－14 接触电阻与接触压力的关系

2．触头材料的影响

触头材料对接触电阻的影响主要取决于触头材料的电阻系数，材料的抗压强度，材料的化学性能等。触头材料的电阻系数越低，接触电阻就越小。表 1－1 列出了电器中常用材料的电阻系数与铜的比较值（铜的电阻系数为 1 ）。

表 1－1 常用材料电阻系数与铜的比较

触头材料及其覆盖层	ρ_{k} 比较值	触头材料及其覆盖层	ρ_{k} 比较值
铜	1	钢	35
镀锡的铜	0.7	碳	1000
搪锡的铜	2.0	黄铜－黄铜	4.0
镀银的铜	0.3	铜－黄铜	2.2
银	0.2	铜－铝	1.3
铝	2.5	铜－钢	7.0

银的电阻系数小于铜，但银比铜价格贵，所以常采用铜镀银或镶银的办法，以减小接触电阻。

材料的抗压强度越小，在同样接触压力下得到的实际接触面积就越大，接触电阻就越小。采用抗压强度小的材料可以使接触电阻降低，但由于触头本身需要一定的机械强度，因此常在接触连接处，用较软的金属覆盖在硬金属上，以获得较好的性能，例如铜触头搪锡等。

材料越易氧化，就越容易在表面形成氧化膜，如不设法清除，接触电阻就会显著增大。例如，铝在常温下几秒钟内就会氧化，其氧化膜导电性很差，故铝一般只用作固定连接，而且常采用表面覆盖银，锡等方法以减小接触电阻。小容量触头常采用点接触的双断点桥式触头，其结构难以实现研磨过程来消除氧化膜，所以触头材料采用银或银基合金。因为银被氧化后的导电能力和纯银相差不多，所以银或镀银的触头工作很稳定。

3．触头温度的影响

触头的接触电阻与它本身的金属电阻一样，也受温度的影响，随着触头温度的升高，接触电阻增加。接触处温度升高后，材料硬度有所降低，使有效接触面积增大，以致在温度增加时，接触电阻的增加比金属材料电阻的增加要小一些，但是温度升高会加剧氧化，温度对接触电阻的影响比较大。

图 1－15 所示为接触电阻与温度的关系表示在接触压力不变的情况下，接触电阻 R_{j} 与触头温度 θ 的关系曲线。曲线 1 的接触压力比曲线 2 的接触压力小，故接触电阻大。接触电阻随温度的升高而增加。当温度达到 B 点时，θ 为 $250 \sim 400{ }^{\circ} \mathrm{C}$ ，材料软化，实际接触面积增大，接触电阻有迅速减小的趋势。这时，触头材料的机械强度突减，触头遭到破坏，这是不允许的。这种情况可能发生在触头通过较长时间短路电流的故障状态。

图 1－15 接触电阻与温度的关系
当材料的强度稳定下来后，接触电阻又随温度的增高而增大。当温度达到 C 点时，材料熔化，接触处就会熔焊在一起，触头难以分离，电器不能正常工作。因此，触头的温升不允许超过允许值。

4．触头表面情况的影响

1）触头表面加工方法的影响
表面粗糙度对接触电阻有一定的影响。接触表面可以粗加工，也可以精加工。至于采用哪种方式加工更好，要根据负荷大小，接触形式和用途而定。对于大，中电流的触头表面，不要求精加工，最好用锉刀加工，接触面达 $R_{\mathrm{a}} \leqslant 6.3 \sim 1.6 \mu \mathrm{~m}$ 即可，重要的是平整。两个平整而较粗糙的平面接触在一起，接触点数目较多且稳定，并能有效地清除氧化膜。相反，精加工的表面，当装配稍有歪斜时，接触点的数目显著减少。

对于某些小功率电器，触头电流小到毫安以下，为了保证 R_{j} 小而稳定，要求触头表面粗糙度越低越好。粗糙度低的触头不易受污染，也不易生成膜电阻。为了达到这样低的粗糙度，往往采用机械，电或化学抛光等工艺。

2）触头表面氧化膜的影响

暴露在空气中的接触面（除铂和金外）都将产生氧化作用。空气中的铜触头在室温下 （ $20 \sim 30^{\circ} \mathrm{C}$ ）即开始氧化，但其氧化膜很薄，在触头彼此压紧的过程中就会被破坏，故对接触电阻影响不大。当温度高于 $70^{\circ} \mathrm{C}$ 时，铜触头氧化加剧，氧化铜的导电性能很差，使膜电

阻急剧增加，因此铜触头的允许温升都是很低的。银被氧化后的导电率与纯银差不多，所以银或镀银的触头工作很稳定。为了减小接触面的氧化，可以将触头表面搪锡或镀银，以获得较稳定的接触电阻。

3 ）触头表面清洁状况的影响
当触头的压力较小时，触头表面的清洁度对接触电阻影响较大，随着压力的增加，这种影响逐渐减小。

4 ）触头表面的电化学腐蚀
采用不同的金属作触头对时，由于两金属接触处有电位差，当湿度大时，在触头对的接触处会发生电解作用，引起触头的电化学腐蚀，使接触电阻增加。

常用金属材料的电化顺序是金（ Au ），铂（ P_{t} ），银（ A_{8} ），铜（ Cu ），氢（ H ），锡（ Sn ），镍（ Ni ），镉（ Cd ），铁（ Fe ），铬（ Cr ），锌（ Zn ），铝（ Al ）。规定氢的电化电位为 0 ，在它后面的金属具有不同的负电位（如 Al 的电化电位为 -1.34 V ），在它前面的金属具有不同的正电位（如 Ag_{g} 的电化电位为 +0.8 V ）。选取触头对时，应取电化顺序中位置靠近的金属，以减小化学电势。例如，不宜采用铝－铜，钢－铜做触头对。电镀层或涂层也要注意电化顺序。

三，减小接触电阻的方法

当电流通过闭合触头时，如果接触电阻过大，就会产生过大的附加损耗，使触头本身及周围的物体温度升高，加速绝缘材料的老化，使之寿命减少。触头的过度发热还会使触头表面加速氧化，而多数金属（除银外）氧化后产生高阻的氧化膜，使电阻增加，这样形成恶性循环。

为了避免触头超过允许温升，一方面要尽量减小接触电阻；另一方面应具有足够的触头散热面积。根据接触电阻的形成原因，减小接触电阻一般可采用下列方法。
（1）增加接触点数目。选择适当的接触形式，用适当的方法加工接触表面，并在接触处加一定的压力，均可使接触点数目增加。
（2）选择合适的材料。采用本身电阻系数小，且不易氧化或氧化膜电阻较小的材料作为接触导体，或作为接触面的覆盖层。
（3）触头在开闭过程中应具有研磨过程，以擦去氧化膜。
（4）经常对触头清扫，使触头表面无油污，尘埃，保持干燥。

四，热焊与冷焊

触头的熔焊主要发生在触头闭合有载电路的过程中和触头处于闭合状态时。在触头闭合过程中，触头的机械振动使触头间断续产生电弧，在电弧高温的作用下，使触头表面的金属熔化。当触头最终闭合时，这些熔化金属可能凝结而引起熔接，使动，静触头熔焊在一起不能打开。在触头处于闭合状态时，若通过过大的电流，会使触头接触处温度升高，如果达到

了熔化温度，两触头接触处的材料便熔化并结合在一起，使接触电阻迅速下降，其损耗和温度都下降，熔化的金属可能凝结而引起熔接。这种由热效应而引起的触头熔接，称为触头的 ＂熔焊＂。

还有一种触头熔接现象，产生于常温状态，通常称为＂冷焊＂。＂冷焊＂常常发生在用贵金属材料（如金与金合金等）制成的小型继电器触点中。贵金属表面不易形成氧化膜，纯净的金属接触面在触头压力作用下，由于金属原子间化学亲和力的作用，使两个触头表面结合在一起，产生＂冷焊＂现象。由＂冷焊＂产生的触头间黏接力很小，但是在小型高灵敏继电器中，由于使触头分开的力也很小（一般小于 $9.8 \times 10^{-2} \mathrm{~N}$ ），不能把冷焊黏接在一起的触点弹开，常常出现触头粘住不释放的现象。

五，触头的磨损

触头在多次接通和断开有载电路后，其接触表面将逐渐产生磨耗和损坏，这种现象称为触头的磨损。触头磨损达到一定程度后，其工作性能便不能保证，此时，触头的寿命即告终结。继电器和接触器的电寿命主要取决于触头的寿命。

触头磨损包括机械磨损，化学磨损和电磨损。机械磨损是在触头闭合和打开时研磨和机械碰撞所造成的，使触头接触面产生压皱，裂痕或塑性变形和磨损。化学磨损是由于周围介质中的腐蚀性气体或蒸气对触头材料侵蚀，使触头表面形成非导电性薄膜，致使接触电阻变大，且不稳定，甚至完全破坏了触头的导电性能。这种非导电性薄膜在触头相互碰撞及触头压力作用下，逐渐剥落，形成金属材料的损耗。机械磨损和化学磨损一般很小，约占全部磨损的 10% 。

触头在分断与闭合电路过程中，在触头间隙中产生金属液桥，电弧和火花放电等各种现象，引起触头材料的金属转移，喷泷和气化，使触头材料损耗和变形，这种现象称为触头的电磨损。电磨损直接影响电器的寿命。触头的电磨损形式主要有两种，即液桥的金属转移和电弧的烧损。

触头开断时，在从触头完全闭合到触头刚开始分离的时间内，先是触头的接触压力和接触点数目逐渐减小，接触电阻越来越大，使接触点的电流密度急剧增加，由此产生的热量促使接触处的金属熔化，形成金属液体滴。触头继续断开时，金属液体滴被拉长，形成液态金属桥，简称为液桥。由于温度沿液桥的长度分布不对称，且其最大值发生在靠近阳极的地方，使金属愹液由阳极转移到阴极。液桥的金属转移作用，经过很多次的操作后，触头的阳极因金属损耗形成凹坑，阴极因金属增多而形成针刺，凸出于接触表面。在弱电流电器（如继电器）中，液桥对触头的电磨损有着重要的影响。

触头的磨损主要是电磨损。电磨损主要发生在触头的闭合和开断过程中，尤其以触头开断过程中产生的电磨损为主。在触头闭合电流时产生的电磨损，主要是由于触头碰撞引起的振动所产生的；在触头开断电流时所产生的电磨损，主要是由高温电弧造成的。

电弧对触头的腐蚀十分严重，电弧磨损要比液桥引起的金属转移高出 $5 \sim 10$ 倍。当负荷电

流超过 20 A ，甚至达到几百或上千安时，电弧的温度极高，触头间距离又较大，一般都有电动力吹弧，再加上强烈的金属蒸气热浪冲击，往往把液态金属从触头表面吹出，向四周飞溅。这种磨损与小功率电弧的磨损是不同的，金属蒸气再度沉积于触头接触表面上的概率已大大减小，使触头阴，阳极都遭到严重磨损，由于阳极温度高于阴极，所以阳极磨损更为严重。

六，触头材料

触头材料关系到触头工作的可靠性，尤其是对触头磨损影响很大。触头材料分为三大类，即纯金属，合金和金属陶冶材料。

1．纯金属材料

（1）银：银是高质量的触头材料，具有高的导电和导热性能。银在常温下不易氧化，其氧化膜能导电，在高温下易分解还原成金属银。银的硫化物电阻率很高，在高温时也能进行分解。因此，银触头能自动清除氧化物，接触电阻低且稳定，使用温度较高。银的缺点是熔点低，硬度小，不耐磨。由于银的价格高，一般仅用于继电器和小功率接触器的触头或用于接触零件的电镀覆盖层。
（2）铜：铜是广泛使用的触头材料，其导电和导热性能仅次于银。铜的硬度较大，熔点较高，易加工，价格较低。铜的缺点是易氧化，其氧化膜的导电性很差，当长时间处于较高的环境温度下，氧化膜不断加厚，使接触电阻成倍增长，甚至会使电流通路中断。因此，铜不适用于非频繁操作电器的触头材料，对于频繁操作的接触器，电流大于 150 A 时，氧化膜在电弧高温作用下分解，可采用铜触头，并做成单断点指式触头，在触头分，合过程中有研磨过程，以清除氧化铜薄膜。
（3）铂：铂是贵金属，化学性能稳定，在空气中既不生成氧化物，也不生成硫化物，接触电阻非常稳定，有很高的生弧极限，不易生弧，工艺性好。铂的缺点是导电和导热性能差，硬度低，价格昂贵。因此，不采用纯铂作为触头材料，一般用铂的合金作小功率继电器的触头。
（4）钨：钨的熔点高，硬度大，耐电弧，铇触头在工作过程中几乎不会产生熔焊。但是，铇的导电性能较差，接触电阻大，易氧化，特别是与塑料等有机化合物蒸气作用（如在封闭塑料外壳内的铇触头），生成透明的绝缘表面膜，而且此膜不易清除，加工困难。因此，除少数特殊场合（如火花放电间隙的电极）外，一般不采用纯钨做触头材料，而与其他高导电材料制成陶冶材料。

2．合金材料

由于纯金属本身性能的差异，将它们以不同的成分相配合，构成金属合金或金属陶治材料，使触头的工作性能得以改进。

常用的合金材料有银铜，银铇，钯铜，钯铱等。
（1）银铜合金：适当提高银铜合金的含铜量，可提高其硬度和耐磨性能。但是，含铜量不宜过高，否则，它会和铜一样易于氧化，接触电阻不稳定。银铜合金熔点低，一般不用作触头材料，主要用作焊接触头的银焊料。
（2）银钨和钯铜：银钨和钯铜都有较高的硬度，比较耐磨，抗熔焊。有时用于小功率电器及精密仪器仪表中。
（3）钯铱合金：钯铱合金使用较广泛，铱有效地提高了合金的硬度，强度及抗腐蚀能力。

3．金属陶冶材料

金属陶冶材料是由两种或两种以上彼此不相熔合的金属组成的机械混合物，其中一种金属有很高的导电性（如银，铜等），作为材料中的填料，称为导电相，另一种金属有很高的熔点和硬度（如铇，镍，锄，氧化镉等），在电弧的高温作用下不易变形和熔化，称为耐熔相，这类金属在触头材料中起着骨架的作用。这样，就保持了两种材料的优点，克服了各自的缺点，是比较理想的触头材料。

常用的金属陶冶材料有银－氧化镉，银－氧化铜，银－铇，银－石墨等。
（1）银－氧化镉：导电性能和导热性能好，抗熔焊，耐电磨损，接触电阻低且稳定，特别是在高温电弧的作用下，氧化镉分解为氧气和镉蒸气，能驱使电弧支点迅速移动，有利于吹灭电弧，故称银－氧化镉触头具有一定的自灭弧能力。此外，它的可塑性好，且易于加工，是一种较为理想的触头材料，广泛应用于大，中容量的电器中。
（2）银－氧化铜：与银－氧化镉相比，其耐磨损，抗熔焊性能好，无毒，在高温下触头硬度更大，使用寿命长，价格便宜。试验结果表明，银－氧化铜触头比银－氧化镉触头在接触处具有更低且稳定的接触电压降，导电性能更好，发热情况较轻，温升较低。因此，近年来银－氧化铜材料得到了广泛的应用。
（3）银－铇：具有银的良好的导电性，又具有铇的高熔点，高硬度，耐电弧腐蚀，抗熔焊，金属转移小等特性，常用作电器的弧触头材料。随着含铇量的增加，其耐电弧腐蚀性能和抗熔焊性能也逐渐提高，但其导电性能下降。银－铇的缺点是接触电阻不稳定，随着开闭次数的增加，接触电阻增大，其原因为分断过程中，触头表面产生三氧化钨，钨酸银等电阻率高的薄膜。
（4）银－石墨：导电性好，接触电阻低，抗熔焊，耐弧能力强，在短路电流作用下也不会熔焊，其缺点是电磨损大。

上述金属陶冶材料是利用粉末冶金法，化学沉淀法（也称为沉淀法）及内氧化法等制成的。

七，典型案例

2008年10月，郑西客专试运营期间， 3 台 CRH2 A 型动车组牵引变流器风机被烧损，经多次检查风机无果后，拆开电路接触器，发现接触器静触头处粘有蟑螂尸体（见图1－16）。蟑螂尸体夹在接触器动静触头之间，引起该相动静触头之间接触不良，接触电阻显著增加。接触器闭合时造成风机三相电不平衡，导致烧损。

接触器检修口决：接触靠压力，温度控制好，闲时勤擦拭，油灰污物消，材质要选对，电能损耗少。

图 1－16 蟑螂尸体夹在接触器动静触头之间

第五节 传动装置

电器的传动装置是有触点电器用来驱使电器运动部分（触头，接点）按一定要求进行动作的机构。在动车组电器上主要采用的是电磁传动装置和电空传动装置，其次还采用了手动，机械式传动装置。电磁传动装置就是通过电磁铁把电磁能转换成机械能来驱动电器动作的机构，主要用于小型电器。在动车组控制电器中装有大量的电磁式接触器，电磁式继电器，自动开关等，都是以电磁铁作为传动机构的。

电空传动装置，是以电磁阀控制的压缩空气作为动力，驱使电器运动部件动作的机构，它广泛用于触头开闭高电压，大电流的场合。

一，电磁传动装置

电磁传动装置是一种通过电磁铁把电磁能转换成机械能来驱使电器触头动作的机构。电磁传动装置的实质是电磁铁，它的形式有很多，如螺管式，直动式，E 形，U 形等，但它们的基本组成和工作原理却是相同的。电磁铁主要由吸引线圈和磁系统两部分组成。磁系统一般由铁心，磁轭和衔铁三部分组成。衔铁又称为动铁心，铁心和磁轭又称为静铁心。下面以直流接触器和继电器常用的拍合式电磁铁为例，说明其工作原理和各组成部分的用途。

如图 1－17 所示为一个直流拍合式电磁铁的结构，它由线圈 3，极靴 2 ，铁心 4 ，磁轭 5和衔铁 1 等组成。线圈 3 套装在铁心 4 上，极靴 2 与衔铁 1 之间的空气隙称为工作气隙，磁

轭 5 与衔铁 1 之间的气隙称为棱角气隙。极靴用来增大气隙磁导，并可以压住线圈。非磁性垫片 6 用来减少剩磁通，以防线圈断电后衔铁被剩磁吸力吸住而不能释放。由于非磁性材料的磁导率和空气的磁导率很接近，故可认为是一个空气隙，称为非工作气隙。

图 1－17 电磁铁的工作原理
电磁铁的工作原理是：在线圈未通电时，衔铁在反力弹簧的作用下，处于打开位置，衔铁与极靴之间保持一个较大的气隙。当线圈接通电源后，在磁系统和工作气隙所构成的回路中产生磁通 Φ ，其流向用右手螺线管法则确定（如图 1－17 中虚线所示）。根据磁力线流入端为 S 极，流出端为 N 极的规定，在工作气隙两端的极靴和衔铁相对的端面上产生异性磁极。由于异性磁极相吸，于是在铁心和衔铁间产生电磁吸力。当电磁吸力产生的转矩大于反力弹簧反作用力产生的转矩时，衔铁被吸向铁心，直到与极靴接触为止，并带动触头动作。这个过程称为衔铁的吸合过程，衔铁与极靴接触的位置称为衔铁闭合位置。此时，衔铁与极靴之间仍有一个很小的气隙。当线圈中的电流减小或中断时，铁心中的磁通变小，吸力也随之减小，如果吸力小于反力弹簧的反力（归算后），衔铁在反力弹簧的作用下返回至打开位置，并带动触头处于另一工作位置。这个过程称为衔铁释放过程。

只要控制电磁铁吸引线圈电流（或电压）就能通过触头来控制其他电器。当线圈失电时，触头若是打开的，称为常开触头（也称为动合触头）；触头若是闭合的，则称为常闭触头（也称为动断触头）。

电磁铁的用途很广，如在接触器中，利用电磁铁带动触头运动，只要控制电磁铁线圈电流的通断，就能使电磁铁完成某一工作任务，实现自动控制及远距离操纵的目的。在许多继电器中利用电磁铁作为感受元件，反映出电路中电压，电流，功率等参数的变化，对电路及电气设备进行保护和控制。

二，电磁铁（电磁传动装置）的分类

电磁铁的结构型式很多，图1－18所示是几种常见电磁铁的结构形式。
（1）按吸引线圈通电电流的性质，可分为直流电磁铁和交流电磁铁。

直流电磁铁线圈通的是直流电流，当电流达到稳定值后，可以认为匝数 N ，电流 I 均不变，故其为恒磁势（IN）系统，磁通不随时间而变化，在铁心中没有涡流和磁滞损耗，铁心可用整块钢或工程纯铁制造。为了便于制造，铁心和极靴一般做成圆形，线圈也做成圆形，形状细高，与铁心配合较紧密。

交流电磁铁的吸引线圈通的是交流电流，可以认为匝数 N 和磁通有效值 Φ 不变，故其为恒磁链 $(\psi=\Phi N)$ 系统。但总磁通 Φ 交变，在铁心中有涡流和磁滞损耗，铁心不能再用整块钢铁制造，一般是用硅钢片叠制而成。为了便于制造，把铁心制成方形的，线圈往往也制成方形，且为＂矮胖型＂，线圈与铁心间的间隙较大，以利于线圈散热。
（2）按吸引线圈与电路的连接方式，可分为并联电磁铁和串联电磁铁。
并联电磁铁的线圈与电源并联，输入电量是电压，其线圈称为并联线圈或电压线圈。其阻抗要求大，电流小，故线圈匝数多且线径细，这种电磁铁应用较为广泛。

串联电磁铁的线圈与负载串联，反应的是电流量，其线圈称为串联线圈或电流线圈。其阻抗要求小，故其匝数少且导线粗，应用较少。
（3）按衔铁的运动方式，可分为直动式和转动式电磁铁两大类。图1－18（a），（f）所示为转动式，其余均为直动式。
（4）按磁系统的结构形状，可分为 U 形，E 形和螺管型。图1－18（a），（g）为 U 形，图 1－18（b），（c ）为螺管型，图1－18（d），（e），（f）均为 E 形。

此外，还可以按电磁铁的动作速度分为快速电磁铁，一般速度和延时动作电磁铁。

（a）拍合式

（b）螺管式

（c）装甲螺管式

（d）盘式

（e）双 E直动式

（f）双 E 转动式

（g）单 U 直动式

图 1－18 常见电磁铁的结构形式

三，电空传动装置

电磁传动装置的电磁吸力随气隙的增加而下降，在需要长行程，大传动力的场合，用电磁传动装置就不适宜了。而电空传动装置却能将较大的力传递较远，动车组上有现成的压缩空气气源，在动车组上采用了许多电空传动的电气设备。此外，与电磁传动装置相比，采用电空传动时，有色金属的消耗及动作时的控制电源功率都可大为减少。

电空传动装置是一种以电磁阀（电空阀）控制的压缩空气作为动力，驱使触头按规定动作的执行机构。它主要由电空阀和压缩空气驱动装置组成。

1．电空阀

电空阀是借电磁吸力来控制压缩空气管路的导通或关断，从而达到远距离控制气动器械的目的。电空阀按工作原理分，有开式和闭式两种，从结构来说都由电磁机构和气阀两部分组成，工作原理也类似。

闭式电空阀如图 1－19 所示，当线圈有电时，衔铁吸合，阀杆动作，使上阀门关闭，下阀门打开，关断了传动气缸和大气的通路，打开了气源和传动气缸的通路，压缩空气从气源经电空阀进入传动气缸，推动气动器械动作。当线圈失电时，衔铁在反力弹簧作用下打开，带动阀杆上移，使下阀门关闭，上阀门打开，关断了气源和传动气缸的通路，打开了传动气缸与大气的通路，传动气缸的压缩空气经电空阀排向大气，气动器械恢复原状。

开式电空阀如图 1－20 所示，线圈失电时，气源和传动气缸接通，大气和传动气缸关闭。

1—㑏体；2—下蔺门；3，6—蔺块；4—蔺杆；
5—电磁铁；7—上阀门；8—反力弹簧。
图1－19 闭式电空阀原理结构

1—蔺体；2—下间门；3，6—间块；4—间杆；
5—电磁铁；7—上阀门；8—反力弹簧。
图 1－20 开式电空阀原理结构

2．压缩空气驱动装置

压缩空气驱动装置有气缸式传动和薄膜式传动两种。
气缸传动装置有单活塞和双活塞气缸传动装置。

单活塞气缸传动装置，如图 1－21（a）所示，当电空阀有电时，其控制的压缩空气进入传动气缸，推动活塞，压缩弹簧，使活塞杆右移，带动触头闭合。当电空阀失电时，其控制的气源被关断，在弹簧的作用下，推动活塞，带动活塞杆左移，使触头打开。通常活塞由皮碗或耐油橡胶制成，活塞上涂有机油，以减少摩擦力并具有良好的密封性能。该种传动方式的优点是工作行程可以选择，以满足开距和超程的要求。缺点是摩擦力较大，动作较慢。

双活塞气缸传动装置，如图1－21（b）所示，当气孔 7 开通气源，气孔 8 通向大气时，压缩空气驱动活塞右移。当气孔 8 开通气源，气孔 7 通向大气时，活塞则反向转动。其特点是所控制的行程受一定限制，且对被控制的触头不具有压力的传递，所以应用较少。

（a）单活塞气缸传动装置

（b）双活塞压缩空气驱动装置示意图

1 —气缸；2，9—活塞；3，10—活塞杆；4—弹簧；5—气缸盖；6—进气孔； 7， 8 —气孔； 9,11 —曲柄； 12 —转鼓； 13 —静触头； 14 —动触头。

图 1－21 气缸式传动装置
薄膜传动装置，如图 1－22 所示，当气孔进入压缩空气时，压迫薄膜，克服弹簧张力，使活塞杆右移，带动触头动作。反之，则触头在弹簧的作用下打开。其特点是动作灵活，摩擦力和磨损较小，加工制作及维修方便。但活塞杆行程小，在低温条件下，薄膜易开裂，须经常更换。

1—蔺体；2，3—活塞杆；4—开断弹簧；5—橡胶薄膜；6—气缸盖；7—弹性薄膜； 8,9 —复原弹簧； 10 —气缸座； 11 —衬套； 12 —杆头。

图 1－22 薄膜传动装置

习 题

一，填空题

1．电器的散热以 \qquad －， \qquad与 \qquad三种基本方式进行。

2．电弧属于 \qquad的一种形式。
3．表面发射指 \qquad的现象，它包括 \qquad ， \qquad ， \qquad和 \qquad －

4．空间游离的方式有 \qquad ，， \qquad和 \qquad ，它们可能同时存在。

5．触头接触面形式分为 \qquad ， \qquad和 \qquad三种。

6．触头的参数主要有触头的 \qquad ， \qquad ＿， \qquad ， \qquad ，触头初压力和 \qquad等。
7．接触电阻包括 \qquad电阻和 \qquad电阻。

8．影响接触电阻的因素有 \qquad ， \qquad ， \qquad ，触头表面情况， \qquad及 \qquad等。

9．触头磨损包括 \qquad ， \qquad和 \qquad －
10．电磁铁主要由 \qquad和 \qquad两部分组成。

11．磁系统一般由 \qquad ，， \qquad和 \qquad三部分组成。

12．电空阀按工作原理分，有 \qquad和 \qquad两种，但从结构来说都由 \qquad和 \qquad两部分组成。

二，选择题

1．一束带电粒子沿水平方向飞过小磁针上方，如图 1－23 所示。 \qquad若带电粒子飞过小磁针上方向的瞬间，小磁针 N 极向纸面内偏转，这带电粒子可能是（）。

A．向右飞行的正离子束
B．向左飞行的正离子束

图 1－23

C．向右飞行的负离子束
D．向左飞行的负离子束
2．如图 1－24 所示，在水平桌面上放一条形磁铁，在磁铁的右上方固定一根通电直导线，则磁铁对桌面的作用力的情况是（ ）。

A．磁铁对桌面有向右的摩擦力和大于重力的压力
B．磁铁对桌面有向左的摩擦力和小于重力的压力
C．磁铁对桌面只有大于重力的压力
D．磁铁对桌面只有小于重力的压力

图 1－24

三，简答题
1．什么是集肤效应？什么是邻近效应？
2．什么是电器的温升？
3．什么是电动力？

4．什么是电器热稳定性及热稳定电流？
5．什么是电器动稳定性及动稳定电流？
6．国家标准规定按耐热性将绝缘材料分为哪几个等级？最高允许温度各为多少？
7．提高导体载流量的常用措施有哪些？
8．磁体的磁极周围的磁场跟电流周围的磁场，本质上是否相同？为什么？
9．什么是气体放电和近阴极效应？
10．电弧熄灭的方法有哪些？
11．写出常用金属材料的电化顺序。
12．减小接触电阻的方法有哪些？
13．触头的电磨损指的是什么？
14．简述极靴和分磁环的作用。
15．请画出闭式电空阀，开式电空阀的原理结构简图。

